REFERENCES

Schoeneberger, P.J., Wysocki, D.A., Benham, E.C., and Broderson, W.D. 1998. Field Book for Describing and Sampling Soils. Natural Resources Conservation Service, USDA, National Soil Survey Center, Lincoln, NE.

Soil Science Society of America. 1997. Glossary of Soil Science Terms. Soil Science Society of America, Madison, Wisconsin.

Soil Survey Staff, Natural Resources Conservation Service, National Soil Survey Handbook, title 430-VI (Washington, D.C., U.S. Government Printing Office, September, 1999).

Soil Survey Staff, Natural Resources Conservation Service, Soil Survey Manual. Agriculture Handbook No. 18 (Washington, D.C., U.S. Government Printing Office, October 1993).

Soil Survey Staff, Natural Resources Conservation Service, Soil Taxonomy, Second Edition. Agriculture Handbook No. 436 (Washington, D.C., U.S.Government Printing Office, 1999).

APPENDIX 1

	SLOPE		PERMEABILITY			ORGANIC MATTER*		
Descriptive Percent		Descriptive Terms			lass	Percent		Adjective
Fercent	Simple	Complex	0.0 - 0.01 0.01 - 0.06	Extremely slow Very slow		< 0.5 0.5 – 1.0		Very low Low
0-3 3-8 8-15 15-25	Level & Nearly Level Gently sloping Strongly sloping Moderately steep	Level & Nearly Level Undulating Rolling Hilly	$\begin{array}{c} 0.06 - 0.2 \\ 0.2 - 0.6 \\ 0.6 - 2.0 \\ 1.0 - 6.0 \\ 6.0 - 20.0 \end{array}$	Mod Mod Mod R	Blow I. Slow derate . Rapid apid	2.0 - 2.0 2.0- 4.0 4.0 - 8.0 > 8.0)	Mod low Moderate High Very high
25-45 45+	Steep Very steep	Steep Very steep	> 20.0	Very	' Rapid	*Based on the	e upp	er 10 inches of soil
SC	DIL TEXTURAL CI	ASSES	AVAILAB			SURFACE RUNOFF		
Texture	e Textural Class	General	Inches/40" Profile*		Class	Class Negligible		Probable Slope Gradient Concave
cos, s Is sl fsl	Coarse Moderately Coarse	Sandy Loamy	0 - 2.4 2.4 - 3.2 3.2 - 5.2 5.2 + *or to a l	М	ery Low Low oderate High ayer	Very low Low Medium High Very high		< 1 1 to < 5 5 to < 10 10 to < 20 <u>></u> 20
vfsl I	Medium		SOIL REACTION FLOODING FREQUENCY			G FREQUENCY		
sil si scl sicl sc sic c	Moderately Fine Fine	Clayey	Term Ultra acio Extremely a V. Strongly ac Mod. Acio Slightly ac Neutral Slightly alka Mod. Alkali Str. Alkalir V. str. alkal	acid acid cid d sid aline ine ne	pH < 3.5 3.5-4.4 4.5-5.0 5.1-5.5 5.6-6.0 6.1-6.5 6.6-7.3 7.4-7.8 7.9-8.4 8.5-9.0 > 9.0	None Rare Occasional Frequent	(e.g 1-5 >5 t	reasonable chance g., <1 time in 500 years) times in 100 years to 50 times in 100 years 0 times in 100 years

TERMINOLOGY USED IN SOILS SURVEY

Adapted (2/2000) from NRCS- NSSH PART 644 Exhibit L-5, Field Book for Describing and Sampling Soils And the Soil Survey Manual

TERMINOLOGY USED IN SOILS SURVEY (continued)

CLAS	CLASSES OF SURFACE STONES & BOULDERS						R ROCK	FRAGMENTS
	%		in meters boulders if			Size	Noun	Adjective
Class	Surface	diameter	is:	r	Name			or CUBELIKE
	covered	0.25m	0.6m	1.2m			mm in diam	,
						>2-75mm	gravel	gravelly
1	0.01-0.1	<u>></u> 8	<u>></u> 20	<u>></u> 37	Stony or bouldery	>2-5mm >5-20mm	fine grave	I fine gravelly medium
2	0.1-3.0	1-8	3-20	6-37	Very stony or very bouldery	>20-75mm	gravel coarse	gravelly coarse
3	3.0-15	0.5-1	1-3	2-6	Extremely stony or extremely bouldery	>75-250mm	gravel cobbles	gravelly cobbly
4	15-50	0.3-0.5	0.5-1	1-2	Rubbly	>250-600mm >600mm	stones boulders	stony bouldery
5	50-90	<0.3	<0.3	<1	Very Rubbly SHAPE- FLAT (mm in lengt			n in length)
							1	
DEPTH TO BEDROCK CLASSES					>2-150mm	channers	channery	
Very sh	Very shallow < 10 inches of mineral soil over bedrock				>150-380mm >380-600mm	flagstones stones	flaggy stony	
	Shallow 10 to \leq 20 inches of mineral soil over bedrock				>600mm	boulders	bouldery	
	Moderately deep20 to <a>4040 inches of mineral soil over bedrockDeep40 to < 60 inches of mineral soil over bedrock						,	
Deep Very de	ep			minerai soi al soil over				

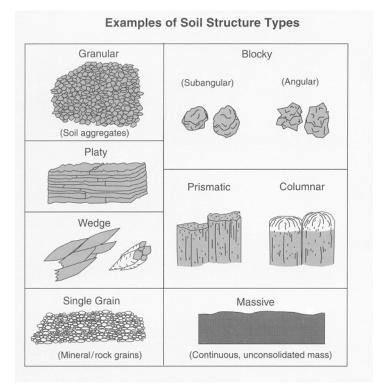
ROCK	Co	ode	Criteria: Percent (By Volume)
FRAGMENTS:		PDP/	of Total Rock Fragments and
Size & Quantity 1	Conv.	NASIS	Dominated By (name size): 1
ROCK FRAGMENT	S (> 2 mi	$m; \ge Stron$	ngly Cemented)
Gravelly	GR	GR	≥ 15% but < 35% gravel
Fine Gravelly	FGR	GRF	≥15% but < 35% fine gravel
Medium Gravelly	MGR	GRM	≥15% but < 35% med. gravel
Coarse Gravelly	CGR	GRC	≥ 15% but < 35% coarse gravel
Very Gravelly	VGR	GRV	≥ 35% but < 60% gravel
Extremely Gravelly	XGR	GRX	≥ 60% but < 90% gravel
Cobbly	CB	CB	≥ 15% but < 35% cobbles
Very Cobbly	VCB	CBV	≥ 35% but < 60% cobbles
Extremely Cobbly	XCB	CBX	≥ 60% but < 90% cobbles
Stony	ST	ST	≥ 15% but < 35% stones
Very Stony	VST	STV	≥ 35% but < 60% stones
Extremely Stony	XST	STX	≥ 60% but < 90% stones
Bouldery	BY	BY	≥ 15% but < 35% boulders
Very Bouldery	VBY	BYV	≥ 35% but < 60% boulders
Extremely Bouldery	XBY	BYX	≥ 60% but < 90% boulders
Channery	CN	CN	≥ 15% but < 35% channers
Very Channery	VCN	CNV	≥ 35% but < 60% channers
Extremely Channery	XCN	CNX	≥ 60% but < 90% channers
Flaggy	FL	FL	≥ 15% but < 35% flagstones
Very Flaggy	VFL	FLV	≥ 35% but < 60% flagstones
Extremely Flaggy	XFL	FLX	≥ 60% but < 90% flagstones
PARAROCK FRAGM	IENTS (>	• 2 mm; <	Strongly Cemented) ^{2, 3}
Parabouldery	PBY	PBY	(same criteria as bouldery)
Very Parabouldery	VPBY	PBYV	(same criteria as very bouldery)
Extr. Parabouldery	XPBY	PBYX	(same criteria as ext. bouldery)
etc.	etc.	etc.	(same criteria as non-para)

TEXTURE MODIFIERS - (adjectives)

¹ The "Quantity" modifier (e.g., very) is based on the total rock fragment content. The "Size" modifier (e.g., cobbly) is independently based on the largest, dominant fragment size. For a mixture of sizes (e.g., gravel and stones), a smaller size-class is named only if its quantity (%) sufficiently exceeds that of a larger size-class. For field texture determination, a smaller size-class must exceed 2 times the quantity (vol. %) of a larger size class before it is named (e.g., 30% gravel and 14% stones = very gravelly, but 20% gravel and 14% stones = stony). For more explicit naming criteria see NSSH-Part 618, Exhibit 618.11(Soil Survey Staff, 2001b).

 ² Use "Para" prefix if the rock fragments are soft (i.e., meet criteria for "para"). [Rupture Resistance - Cementation Class is < Strongly Cemented, and do not slake (slake test: ~3cm (1 inch) diam. block, air dried, then submerged in water for ≥ 1 hour; collapse / disaggregation = "slaking").]
 ³ For "Para" codes, add "P" to "Size" and "Quantity" code terms. Precedes noun

³ For "Para" codes, add "P" to "Size" and "Quantity" code terms. Precedes noun codes and follows quantity adjectives, e.g., paragravelly = PGR; very paragravelly = VPGR.


(SOIL) STRUCTURE

(Soil) Structure is the naturally occurring arrangement of soil particles into aggregates that results from pedogenic processes. Record **Grade**, **Size**, and **Type**. For compound structure, list each **Size** and **Type**; e.g., *medium and coarse SBK parting to fine GR*. Lack of structure (structureless) has two end members: *massive (MA)* or *single grain (SG)*. A complete example is: *weak, fine, subangular blocky* or 1, f, sbk.

(SOIL) STRU	CTURE - TYPE	(formerly Shape) -

Туре	C	ode	Criteria:		
	Conv. NASIS		(definition)		
NATURAL	SOIL ST	RUCTUR	AL UNITS (pedogenic structure)		
Granular	gr	GR	Small polyhedrals, with curved or very irregular faces.		
Angular Blocky	abk	ABK	Polyhedrals with faces that intersect at sharp angles (planes).		
Subangular Blocky	sbk	SBK	Polyhedrals with sub-rounded and planar faces, lack sharp angles.		
Platy	pl	PL	Flat and tabular-like units.		
Wedge	_	WEG	Elliptical, interlocking lenses that terminate in acute angles, bounded by slickensides; not limited to vertic materials.		
Prismatic	pr	PR	Vertically elongated units with flat tops.		
Columnar	cpr	COL	Vertically elongated units with rounded tops which commonly are "bleached".		
STRUCTUR	ELESS				
Single Grain	sg	SGR	No structural units; entirely noncoherent; e.g., loose sand.		
Massive	m	MA	No structural units; material is a coherent mass (not necessarily cemented).		
ARTIFICIAL (non-pedog			IENTS OR CLODS 1		
Cloddy 1	-	CDY	Irregular blocks created by artificial distur bance; e.g., tillage or compaction.		

¹ Used only to describe oversized, "artificial" earthy units that are not pedogenically derived soil structural units; e.g., the direct result of mechanical alteration; use **Blocky Structure Size** criteria.

REVISED 3/2009

(SOIL) STRUCTURE - GRADE

Grade	Code	Criteria
Structureless	0	No discrete units observable in place or in hand sample.
Weak	1	Units are barely observable in place or in a hand sample.
Moderate	2	Units well-formed and evident in place or in a hand sample.
Strong	3	Units are distinct in place (undisturbed soil), and separate cleanly when disturbed.

(SOIL) STRUCTURE - SIZE

Size Class		de NASIS	Criteria: structural unit size ¹ (mm)			
			Granular Platy ² Thickness	Columnar, Prismatic, Wedge ³	Angular & Subangular Blocky	
Very Fine (Very Thin) ²	vf (vn)	VF (VN)	< 1	< 10	< 5	
Fine (Thin) 2	f (tn)	F (TN)	1 to < 2	10 to < 20	5 to < 10	
Medium	m	М	2 to < 5	20 to < 50	10 to < 20	
Coarse (Thick) ²	co (tk)	CO (TK)	5 to < 10	50 to < 100	20 to < 50	
Very Coarse (Very Thick) ²	vc (vk)	VC (VK)	≥ 10	100 to < 500	≥ 50	
Extr. Coarse	ec	EC	<u> </u>	≥ 500		

Size limits always denote the <u>smallest</u> dimension of the structural units.
 For platy structure only, substitute *thin* for *fine* and *thick* for *coarse* in the size class names.

³ Wedge structure is generally associated with Vertisols (for which it is a requirement) or related soils with high amounts of smectitic clays.

USDA-NRCS

2-43

September 2002

RUPTURE RESISTANCE FOR:

Blocks, Peds, and Clods - Estimate the class by the force required to rupture (break) a soil unit. Select the column for the appropriate soil water state (*dry* vs. *moist*) and/or the *Cementation* column, if applicable.

Dry ¹ Class Code ³	Moist ¹ Class Code ³	Cementation ² Class Code ³	Specimen Fails Under
Loose L d(lo)	Loose L m(lo)	[Not Applicable]	Intact specimen not obtainable
Soft S d(so)	Very VFR Friable m(vfr)	Non- NC Cemented	Very slight force between fingers. <8 N
Slightly SH Hard d(sh)	Friable FR m(fr)	Extremely EW Weakly Cemented	Slight force between fingers. 8 to < 20 N
Mod. MH Hard d(h)	Firm FI m(fi)	Very VW Weakly Cemented	Moderate force between fingers. 20 to < 40 N
Hard HA d(h)	Very VFI Firm m(vfi)	Weakly W Cemented c(w)	Strong force between fingers. 40 to < 80 N
Very VH Hard d(vh)	Extr. EF Firm m(efi)	Moderately M Cemented	Moderate force between hands. 80 to < 160 N
Extremely EH Hard d(eh)	Sli <i>ghtly</i> SR Rigid m(efi)	Strongly ST Cemented c(s)	Foot pressure by full body weight. 160 to < 800 N
Rigid R d(eh)	Rigid R m(efi)	Very VS Strongly Cemented	Blow of < 3 J but not body weight. 800 N to < 3 J
Very VR Rigid d(eh)	Very VR Rigid m(efi)	Indurated I c(I)	Blow of \ge 3 J. (3 J = 2 kg weight dropped 15 cm).

¹ Dry Rupture Resistance column applies to soils that are moderately dry or drier (*Moderately Dry* and *Very Dry* Soil Water State sub-classes). Moist column applies to soils that are slightly dry or wetter (*Slightly Dry* through *Satiated* Soil Water State sub-classes; Soil Survey Staff, 1993; p. 91).

² This is not a field test; specimen must first be air dried and then submerged in water for a minimum of 1 hour prior to test (Soil Survey Staff, 1993; p. 173).

³ Codes in parentheses (e.g., d(lo); Soil Survey Staff, 1951) are obsolete.

Mottles - Contrast - Record the color difference between the mottle and the dominant matrix color. Use this table or the following chart to express the difference. [1st table: Obsolete —shown here for historical purposes]

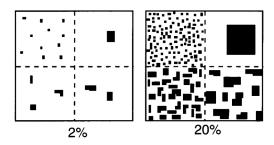
Contrast Code Class		Difference in Color Between Matrix and Mottle					
		Hue 1	Value		Chroma		
Faint ²	F	same page	0 to <u></u> ≤2	and	≤1		
Distinct	D	same page	>210 24	and	< 4		
				or			
		L@C	<u></u>	and	> 1 to < 4		
		1 page	_\$ 2 ~_	and	≤1		
Prominent	Р	samé pageo.	~@) ⁹	or	≥ 4		
		1 page	√ ¥2	or	>1		
		≥ 2 pages	≤0	or	≥ 0		

⁷ One Munsell® Color Book page = 2.5 hue units. Table contents compiled from material in or intended by the Soil Survey Manual (Soil Survey Staff, 1993).

Contrast Class	Code	Difference in Color Between Matrix and Mottle (A means "difference between")				
		Hue (h)	Value (v)		Chroma (c)	
Faint ¹	F	$\Delta h = 0;$	$\Delta v \le 2$	and	<u>Δc ≤ 1</u>	
		Δh = 1;	∆v ≤ 1	and	Δc ≤ 1	
		Δh = 2;	$\Delta v = 0$	and	$\Delta c = 0$	
		Δh = 0;	∆v ≤2	and	$\Delta c > 1$ to < 4	
Distinct 1	D	or	$\Delta v > 2$ to < 4	and	$\Delta c < 4$	
		$\Delta h = 1;$	<u>Δv ≤1</u>	and	$\Delta c > 1$ to < 3	
		or	$\Delta v > 1$ to < 3	and	$\Delta c < 3$	
		∆h = 2;	$\Delta v = 0$	and	$\Delta c > 0$ to < 2	
		or	$\Delta v > 0$ to < 2	and	Δc < 2	
		Δh = 0;	$\Delta \ge 4$	or	$\Delta c \ge 4$	
Prominent ¹	P	Δh = 1;	Δ ≥ 3	or	$\Delta c \ge 3$	
		∆h = 2;	∆ ≥ 2	or	∆c ≥ 2	
		∆h ≥ 3;				

¹ If compared colors have both a Value \leq 3 and a Chroma of \leq 2, the contrast is *Faint*, regardless of Hue differences.

USDA-NRCS


2-11

September 2002

MOTTLES - Describe mottles (areas of color that differ from the matrix color). These colors are commonly lithochromic or lithomorphic (attributes retained from the geologic source rather than from pedogenesis; e.g., gray shale). Mottles exclude: Redoximorphic Features (RMF) and Ped and Void Surface Features (e.g., clay films). Record Quantity Class (in NASIS/PDP, estimate a numerical value "Percent of Horizon Area Covered"), Size, Contrast, Color, and Moisture State (D or M). Shape is an optional descriptor. A complete example is: few, medium, distinct, reddish yellow, moist, irregular mottles or f, 2, d, 7.5 YR 7/8, m, z, mottles.

Mottles - Quantity (Percent of Area Covered)

Quantity	Co	de	Criteria:
Class	Conv.	NASIS	range in percent
Few	f	%	< 2% of surface area
Common	c	%	2 to < 20% of surface area
Many	m	%	≥ 20% of surface area

Mottles - Size - Record mottle size class. Use length if it's greater than 2 times the width; use width if the length is less than two times the width. Length is the greater of the two dimensions. (New size classes to be consistent with the new RMF size classes.)

Code	Criteria
1	< 2 mm
2	2 to < 5 mm
3	5 to < 20 mm
4	20 to < 76 mm
5	≥ 76 mm
	Code 1 2 3 4 5

USDA-NRCS 2-9 September 2002

PERMEABILITY

Permeability	Code		Criteria:	
Class	PDP	NASIS	estimated in / hr 1, 2	
Impermeable	IM	IM	< 0.0015	
Very Slow	VS	VS	0.0015 to < 0.06	
Slow	S	SL	0.06 to < 0.2	
Moderately Slow	MS	MS	0.2 to < 0.6	
Moderate	М	MO	0.6 to < 2.0	
Moderately Rapid	MR	MR	2.0 to < 6.0	
Rapid	RA	RA	6.0 to < 20	
Very Rapid	VR	VR	≥ 20	

Estimate the **Permeability Class** for each horizon. Guidelines for estimating permeability are found in Exhibit 618-9, NSSH (Soil Survey Staff, 2001).

¹ These class breaks were originally defined in English units and are retained here, as no convenient metric equivalents are available.

² To convert μm / sec (NASIS Permeability, Ksat units) to in / hr, multiply μm / sec by 0.1417; e.g. (100 μm / sec) x (0.1417) = 14.17 in / hr. To convert in / hr to μm / sec multiply by 7.0572.

SATURATED HYDRAULIC CONDUCTIVITY (Ksat)

Saturated Hydraulic Conductivity is used to convey the rate of water movement through soil under (field) saturated conditions. Record the **Average K_{sat} (X)**, **Standard Deviation (s)**, and **Number of Replications (n)** of each major layer/horizon as measured with a constant-head method (e.g., Amoozemeter, Guelph Permeameter, etc.). **NOTE**: This data element should be measured rather than estimated and subsequently placed into classes. Estimates of water movement based on texture or other proxies must use the preceding "Permeability Class Table."

FLOODING - Estimate the Frequency, Duration, and Months that flooding is expected; e.g., *rare, brief, Jan. - March.*

Frequency	Code		Criteria: estimated,	
Class	PDP	NASIS	average number of flood events per time span ¹	
None	NO 2	NO	No reasonable chance (e.g., < 1 time in 500 years)	
Very Rare	NO 2	VR	≥ 1 time in 500 years, but < 1 time in 100 years	
Rare	RA	RA	1 to 5 times in 100 years	
Occasional 3	00	OC	> 5 to 50 times in 100 years	
Frequent 3, 4	FR	FR	> 50 times in 100 years	
Very Frequent 4,5	—	VF	> 50% of all months in year	

Frequency - Estimate how often, typically, that it floods.

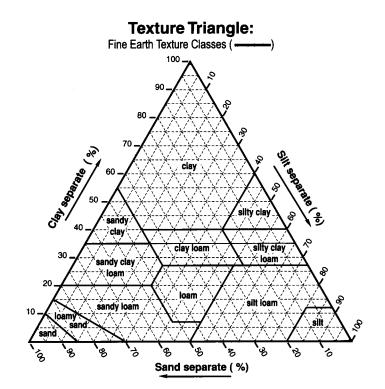
¹ Flooding Frequency is an estimate of the current condition, whether natural or human-influenced (such as by dams or levees).

² In PDP, *None* class (< 1 time in 100 years) spans both *None* and *Very Rare* NASIS classes.

³ Historically, *Occasional* and *Frequent* classes could be combined and called *Common*; not recommended.

4 Very Frequent class takes precedence over Frequent, if applicable.

. . .


~ ~ ~ ~

⁵ The Very Frequent class is intended for tidal flooding.

Adapted (2/2000) from NRCS- NSSH PART 644 Exhibit L-5, Field Book for Describing and Sampling Soils And the Soil Survey Manual

APPENDIX 2

TEXTURAL TRIANGLE

APPENDIX 3

EXAMPLES OF MAP UNIT DESCRIPTIONS

The following examples of map unit descriptions are intended as only one example of many variations that will adequately meet MAPSS Standards as outlined on page 3 of this document. For a consociation both the narrative and tabular forms are shown, both of which are acceptable provided all the required elements outlined in the standards are met. As with all phases of soil identification and mapping, information in addition to the minimum required elements may be added to map unit descriptions as necessary to meet the intent or purpose of the soil survey.

Example of Consociation - Narrative Form

ScA - Scantic silt loam, 0 to 3 percent slopes.

Scantic soils are very deep and poorly drained. They formed in glaciomarine or glaciolacustrine deposits. These soils occur on nearly level concave positions on the landscape. Slopes range from 0 to 3 percent and are concave in shape.

A typical pedon was described for this soil at TP 15. Typically, the surface layer is 5 inches of very dark grayish brown silt loam. The subsoil is 6 inches of mottled light olive brown silty clay loam over mottled olive silty clay loam. The substratum is very firm gleyed greenish gray silty clay to greater than 40 inches in depth. Depth to bedrock is greater than 60 inches.

Scantic soils are found on the landscape in association with Lamoine silt loam, 1 to 3 percent slopes; Lamoine silt loam, 3 to 8 percent slopes; and Biddeford muck, 0 to 1 percent slopes.

Permeability is moderately slow in the surface horizon and slow to very slow below that depth. Runoff is slow. Hydrologic group is D. K-Factor is .32.

These soils are dominantly forested. Common tree species include speckled alder, red maple, balsam fir, and gray birch.

These Scantic soils have very low potential for septic systems, for dwellings, and for general development. They have very low potential for road building. These soils have excess water which may make soils unsuitable for septic systems or result in poor system performance due to excess water. Dwellings with basements will be affected by excess water, requiring footing and underslab drains, sump pumps, waterproofing, and larger footings. Roads will require ditching, culverts, riprap and fill and will be subject to increased long-term maintenance due to wetness and potential high frost action. Corrective measures to overcome soil limitations may not be permitted on these hydric soils without some local, state, or federal wetlands permit(s).

Map unit boundaries were located using a combination of pacing and orientation to control points established by a Professional Land Surveyor. Boundaries were located with an accuracy of approximately 50 feet in most areas. Minimum map unit delineation is about 1 acre or less.

These Scantic soils are hydric as defined by the National Technical Committee on Hydric Soils.

Example of Consociation - Tabular Form

Map Unit Name: Biddeford mucky peat, 0 to 3 percent slopes.

BIDDEFORD (Histic Humaquept)

<u>SETTING</u>

Parent Material:	Derived from marine & lacustrine sediments.		
Landform:	Nearly level lowlands.		
Position in Landscape:	Usually occupies the lowest position within the landscape.		
Slope Gradient Ranges:	(A) 0-3%		
	COMPOSITION AND SOIL CHARACTERISTICS		
Drainage Class:	Biddeford soil is very poorly drained with the perched water table within 0.5 feet of the soil surface, and may be ponded at the surface for some portion of the year.		
Typical Profile Description:	Surface Layer:Very dark brown mucky peat, 0-12"Subsurface Layer:Gray silt loam, 12-16"Subsoil Layer:Olive gray/dark gray silty clay, 16-35"Substratum:Gray silty clay & silty clay loam, 35-65"		
Hydrologic Group:	Group D		
Surface Run Off:	Very slow		
Permeability:	Moderate or moderately slow in upper horizons, slow or very slow in substratum.		
Depth to Bedrock:	Deep, more than 40 inches.		
Hazard to Flooding:	This soil is intermittently ponded, and may rarely flood in areas adjacent to streams and rivers during periods of prolonged wetness.		
INCLUSIONS (Within Mapping Unit)			
Similar:	Scantic		
Contrasting:	Whately, Roundabout		
USE AND MANAGEMENT			

Development with subsurface wastewater disposal: The limiting factor for building site development is wetness due to a high water table throughout the year. Biddeford soil has very low potential for dwellings with foundations and road construction due to ponding and low strength. Biddeford soil is unsuitable for subsurface wastewater disposal as defined by the State of Maine Subsurface Wastewater Disposal Rules. Biddeford soil is usually classified a wetland, based on the combined consideration of hydric conditions, hydrology, and vegetation.

Example of a Complex—Narrative Form

LsB - Lamoine-Scantic complex, 0 to 8 percent slopes

Soils in this complex consist of 60 percent Lamoine silt loam, 3 to 8 percent slopes, bouldery; 30 percent Scantic silt loam, 0 to 3 percent slopes, bouldery; and 10 percent other soils. Major inclusions are Buxton silt loam, 3 to 8 percent slopes; Howland silt loam, 0 to 3 percent slopes, and Monarda muck, 0 to 1 percent slopes. These soils are so closely intermingled on the landscape that it is not possible to map them separately.

Lamoine soils are very deep and somewhat poorly drained. They formed in glaciomarine or glaciolacustrine sediments. These soils occur on nearly level to gently sloping ridges. Slopes range from 1 to 5 percent. These Lamoine soils occur on the hummock tops and sideslopes in a convex position.

A typical pedon for this soil was described at TP24. Typically, the surface layer is 4 inches of dark brown silt loam. The subsoil is 4 inches of dark yellowish brown silt loam over light olive brown silt loam to 15 inches in depth. The substratum is firm mottled olive silty clay loam to greater than 40 inches in depth. Depth to bedrock is greater than 60 inches.

Permeability is moderate to moderately slow in the surface layer, moderately slow to slow in the subsoil, and slow or very slow in the substratum. Surface runoff is medium. Hydrologic group is D. K-Factor is .32.

These soils are forested. Common tree species include balsam firm, white spruce, red maple, and gray birch.

Scantic soils are very deep and poorly drained. They formed in silty glaciomarine or glaciolacustrine deposits. These soils occur between hummocks on gently sloping ridges. Slopes range from 0 to 3 percent and are concave in shape.

A typical pedon for this soil was described at TP25. There is a 4 inches thick surface layer of very dark grayish brown silt loam. The subsoil is 4 inches of mottled olive brown silt loam over mottled light olive gray silty clay loam to a depth of 18 inches. The substratum is very firm mottled light olive gray silty clay loam to greater than 40 inches in depth. Depth to bedrock is greater than 60 inches.

Permeability is moderate to moderately slow in the surface layer, moderately slow to slow in the upper subsoil, and slow to very slow in the lower subsoil and in the substratum. Surface runoff is medium. Hydrologic group is D. K-Factor is .32.

These soils are forested. Common tree species include maple, balsam fir, white spruce and poplar.

Map unit boundaries were located using a combination of pacing and taping to control points established on the ground by a Professional Land Surveyor. Boundaries were located with an accuracy of approximately 50 feet in most areas. Minimum map unit delineation size is about 1 acre.

Lamoine soils have low potential for septic systems due to excess water that will negatively affect system performance. Some Lamoine soils will have very low potential or be unsuitable for septic systems at the "wet" end of this drainage class. Dwellings with basements will have medium potential for overcoming existing soil limitations such as excess water. Typically corrective measures are footing and underslab drains, sump pumps, waterproofing, and larger footings. Roads will have low potential in these soils and will require ditching, culverts, riprap and fill to overcome excess water and potential high frost action. Overall, these Lamoine soils have low potential for development due to excess water in the substratum and the potential for high frost action.

Scantic soils have very low potential for septic systems, for dwellings, and for general development. They have very low potential for road building. These soils have excess water which may make soils unsuitable for septic systems or result in poor system performance due to excess water. Dwellings with basements will be affected by excess water, requiring footing and underslab drains, sump pumps, waterproofing, and larger footings. Roads will require ditching, culverts, riprap, fill, and increased long-term maintenance due to wetness and potential high frost action.

Scantic soils are hydric as defined by the National Technical Committee on Hydric Soils. Soil disturbance, filling, or dredging on or near these Scantic soils may require local, state and federal approval.

APPENDIX 4

CONVENTIONAL AND SPECIAL SYMBOLS

Introduction

Conventional symbols on soil maps represent water and cultural features to help users locate areas on the map. Special symbols identify areas of soils and miscellaneous areas. Special symbols are also used to depict land features that are too small to be delineated at the scale of mapping, but that have a significant effect on use and management (i.e., rock outcrop, wet spot). Ad hoc soil symbols are used for areas that have distinct conditions that the soil scientist wants to show on the map that are not defined in the following table. Symbols must be defined and specify the size of the area that each represents. Conventional and special symbols are described in the following table. Refer to the Soil Survey Manual for a more detailed discussion.

COMMON SOIL MAP SYMBOLS (TRADITIONAL)			
(From the National Soil Survey Handbook, Title 170, Part 601, 1990.) The following symbols are common on field sheets (original aerial photograph based soil maps) and in many soil surveys published prior to 1997. Current guidelines for map compilation symbols are in NSSH, Exhibit 627-5, 2001			
FEATURE	SYMBOL		
LANDFORM FEATURES			
SOIL DELINEATIONS:	BaC		
ESCARPMENTS:			
Bedrock	(Points down slope)		
Other than bedrock	(Points down slope)		
SHORT STEEP SLOPE	••••		
GULLY	~~~~~~		
DEPRESSION, closed	•		
SINKHOLE	\diamond		
Prominent hill or peak	*		
EXCAVATIONS:			
Soil sample site	S		
(Type location, etc. Borrow pit			
Gravel pit	×		
Mine or quarry	Ŕ		
LANDFILL	\bigcirc		
USDA-NRCS 7-8	September 2002		

CONVENTIONAL AND SPECIAL SYMBOLS LEGEND

	FEATURE		SYMBOL
M	ISC. SURFACE FEATUR	- RES:	
	Blowout		۲
	Clay spot		*
	Gravelly spot		
	Lava flow		٨
	Marsh or swamp		*
	Rock outcrop (includes sandstone and shale)		\vee
	Saline spot		+
	Sandy spot		:•:
	Severely eroded spot		÷
	Slide or slip (tips point a	upslope)	})
	Sodic spot		Ø
	Spoil area		11
	Stony spot		0
	Very stony spot		0
	Wet spot		¥
USDA-N	IRCS	7-9	September 20

CONVENTIONAL AND SPECIAL SYMBOLS LEGEND

HYDROGRAPHIC FEATU	RES:	
STREAMS:		
Perennial, <i>double</i> line (large)		
Perennial, <i>single</i> line (small)		· · · · · · · · · · · · · · · · · · ·
Intermittent		
Drainage end or flow direction		
SMALL LAKES, PONDS AND RESERVOIRS:		
Perennial water		\bigcirc
Miscellaneous water		O
Flood pool line		FLOOD POOL LINE
Lake or pond (perennial)		\bigcirc
MISCELLANEOUS WATER FEATURES:		
Spring		0~
Well, artesian		-
Well, irrigation		-0-
USDA-NRCS	7-12	September 2002

CONVENTIONAL AND SPECIAL SYMBOLS LEGEND

APPENDIX 5

GUIDE TO MAP SCALES AND MINIMUM SIZE DELINEATIONS¹

A soil survey is generally designed to provide soil information for a specified purpose or objective. The amount or type of information needed to meet the objective or purpose of the soil survey and the complexity of the soils on the ground determine the map scale.

When using soil maps, one must remember that <u>scale</u>, <u>accuracy</u>, and <u>detail</u> are not the same thing.

<u>Map Scale</u> is the relationship between corresponding distance on a map (a piece of paper) and the actual distance on the ground.

<u>Map Accuracy</u> is the precision with which map information is obtained, measured, and recorded.

<u>Map Detail</u> is the amount of information shown on a map. The more information, the more detailed the map.

In many places the pattern of soils is very complex, and in some places soils grade imperceptibly to other soils. Because of this, the soil units, even on a large-scale soil survey map, may not be absolutely homogenous or pure; thus, on-site soil investigations are needed for specific small land area uses. For example, on-site investigations are needed to determine the suitability of a 0.1 acre plot for subsurface wastewater disposal for map units on a 1:20,000 scale soil survey.

A common misuse of soil maps is to "blow them up" to a larger scale. This does not result in a more detailed or accurate map. In fact, the "blown up" map is misleading because if the mapping was done at the larger ("blown up") scale, more detail could be shown. For example, soil survey maps at a 1:20,000 scale "blown up" to a 1:12,000 scale are no more accurate or detailed than the original 1:20,000 map.

Map scale must accommodate legible delineations of the smallest size necessary for the standards of purity. Many users who need precise information about the soils of small areas focus their attention on a small part of the map and concentrate on relatively few delineations at one place on the map. They are not distracted by numerous boundaries

and symbols on other parts of the map. They are seeking accurate information about a small discrete area. Consequently, the map scale for this group of users will need to be large enough to accommodate delineations of the smallest size to meet their requirements. This is commonly called the minimum size delineation.

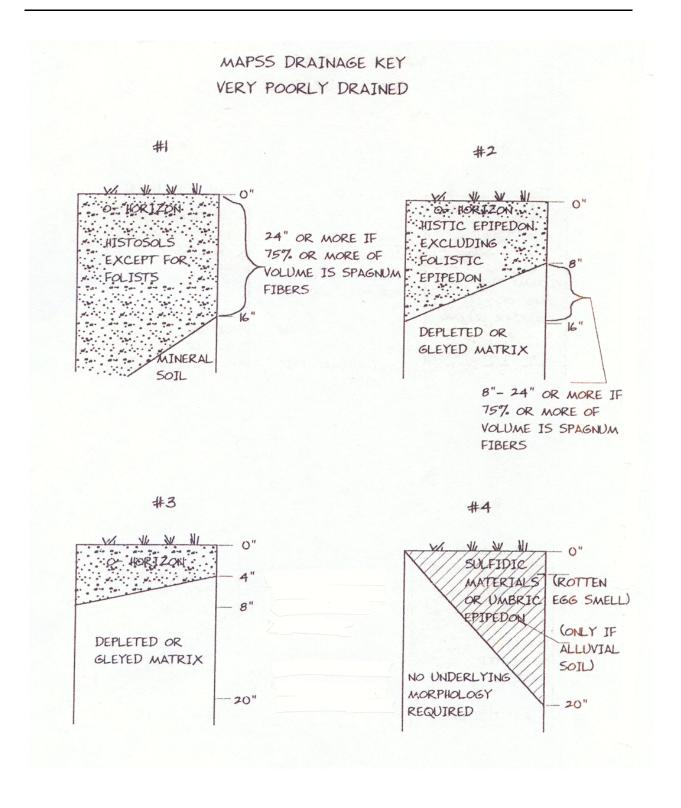
The minimum size delineation, that is, the largest size of a contiguous limiting dissimilar soil is determined by the map scale and/or the need of the user. Although it is not possible to reduce the minimum size delineation as shown in the attached table and provide a legible product, it is possible to increase the size of the minimum delineation if this meets the needs of the user. See Section 2, "Class of Soil Survey", of the Soil Survey Standards for the minimum size delineation.

Taken from previous work of John Ferwerda, except last paragraph.

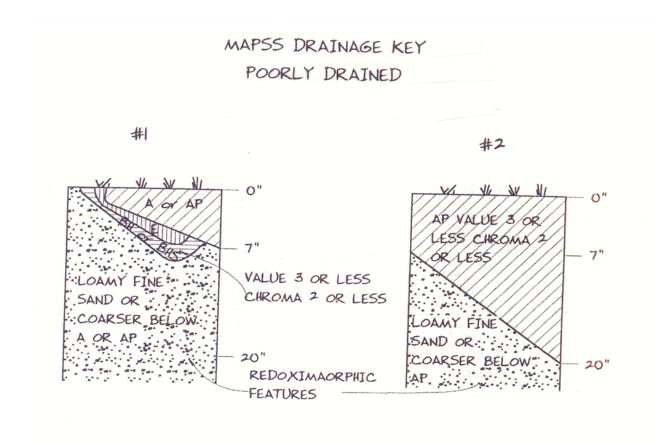
GUIDE TO MAP SCALES AND MINIMUM SIZE DELINEATIONS

MAP SCALE		IN/MILE	MINIMUM SIZE DELINEATION ¹	
<u>RATIO</u>	COMMON		ACRES	HECTACRES
1:500	1" = 42'	126.7	0.0025	0.001
1:2,000	1" = 166.7'	31.7	0.040	0.016
1:5,000		12.7	0.25	0.10
1:6,000	1" = 500'	10.56	0.30	0.12
1:7,920	1" = 660'	8.00	0.62	0.25
1:10,000		6.34	1.00	0.41
1:12,000	1" = 1,000'	5.28	1.43	0.57
1:15,840	1" = 1,320'	4.00	2.5	1.0
1:20,000	1" = 1,667'	3.17	4.0	1.6
1:24,000	1" = 2,000' (7.5' Series)	2.64	5.7	2.3
1:31,680		2.00	10.0	4.1
1:62,500	1" = 5,208' (15'Series)	1.01	39	15.8
1:63,360	1" = 5,280' (Wildlands/Timber)	1.00	40	16.2
1:100,000		0.63	100	40.5
1:125,000		0.51	156	63
1:250,000		0.25	623	252
1:300,000		0.21	897	363
1:500,000		0.127	2,500	1,000
1:750,000		0.084	5,600	2,270
1:1,000,000		0.063	10,000	4,000
1:5,000,000		0.013	249,000	101,000
1:7,500,000		0.0084	560,000	227,000
1:15,000,000		0.0042	2,240,000	907,000
1:30,000,000		0.0021	9,000,000	3,650,000
1:88,000,000		0.0007	77,000,000	31,200,000

¹The "minimum size delineation" is taken as a 1/4" x 1/4" inch square area (1/16 sq. in.). Cartographically, this is about the smallest area in which a symbol can be printed readily. Smaller areas can be delineated, and the symbol lined in from outside, but such very small delineations drastically reduce map legibility.

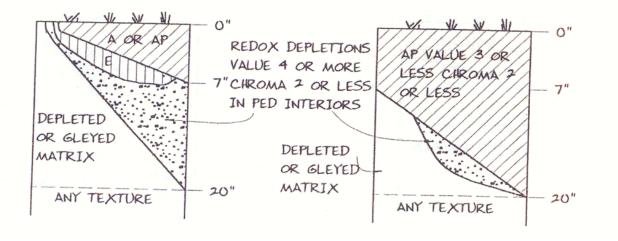

GUIDE TO MAP SCALES AND MINIMUM SIZE DELINEATION FOR MAPSS CLASSES OF SOIL SURVEYS

Ratio	Class	Scale	Minimum Size of Dissimilar Limiting Inclusion
1:1200	Class A	1" = 100' or larger 5445 sq. ft.	0.125 acres
1:2400	Class B	1" = 200' or larger43,560 sq. ft.	1 acre
1:6000	Class C	1" = 500' or larger217,800 sq. ft.	5 acres
1:24000	Class D	1" = 2000' or larger	> 217,800 sq. ft. greater than 5 acres

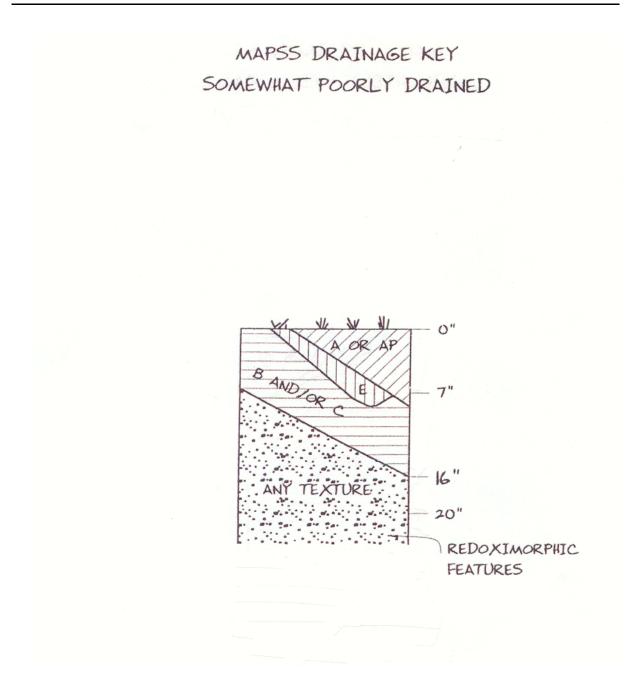

APPENDIX 6

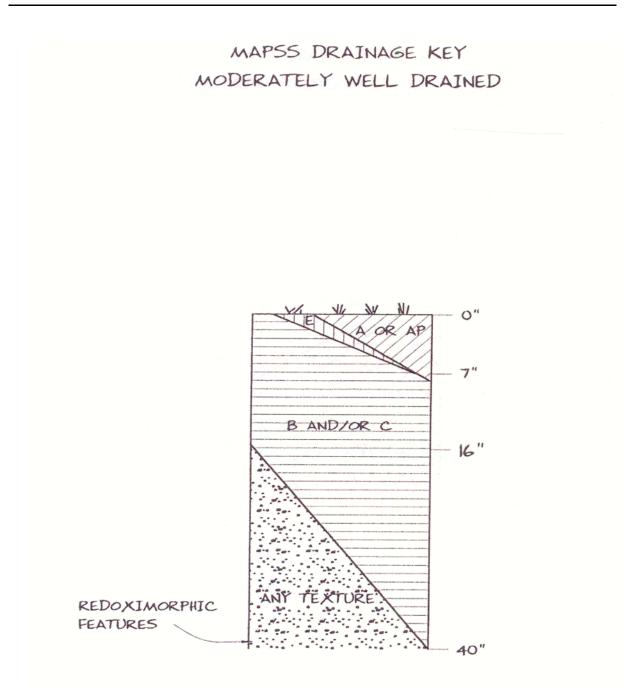
DIAGRAMS OF MAINE DRAINAGE CLASSES

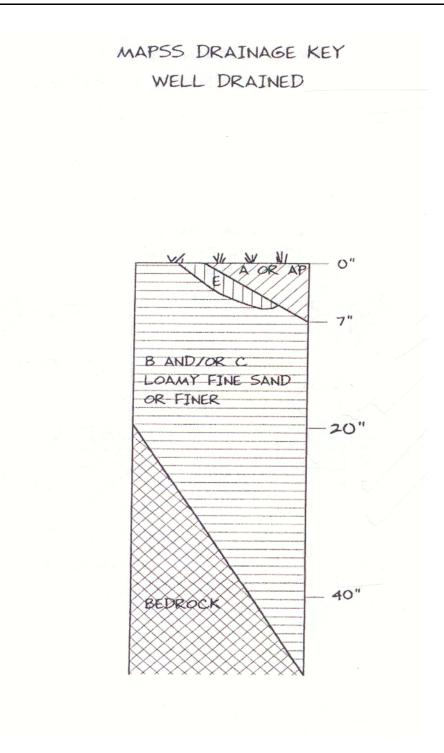
The following diagrams attempt to graphically represent the technical criteria for each of the seven drainage classes detailed in the MAPSS *Key to Drainage Classes*. The diagrams are intended to be used as a general guide and training tool for both soil scientists and non-soil scientists. Do not rely solely on these diagrams for determining the drainage class of a soil because they may not accurately reflect all field situations and the technical criteria outlined in the MAPSS *Key to Drainage Classes*.

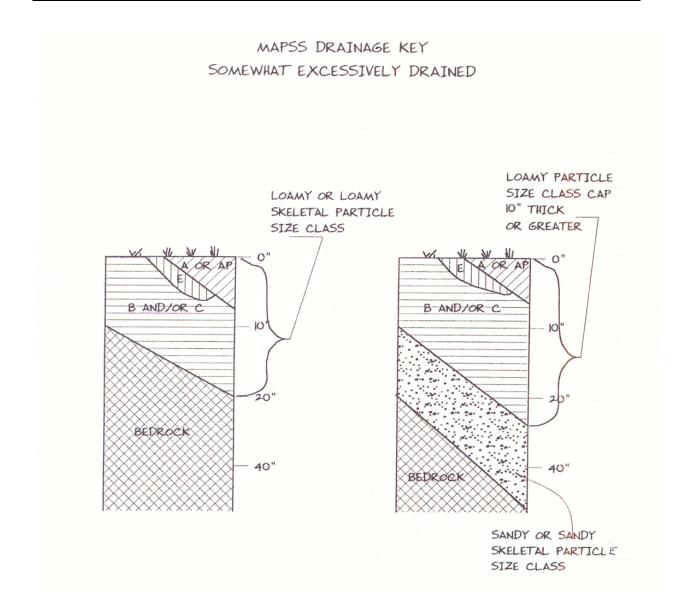


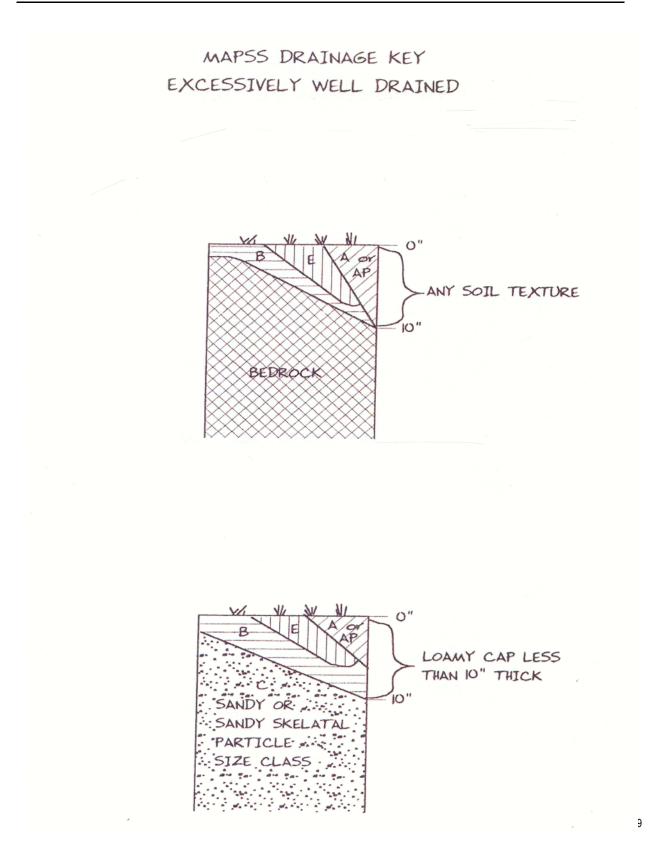
Revised 3/2009




#3


#4




Revised 3/2009

APPENDIX 7

HYDRIC SOILS OF MAINE

Introduction

Hydric soils are developed under sufficiently wet conditions to support the growth and regeneration of hydrophytic vegetation. This list includes phases of soil series that may or may not have been drained. Some series, designated as hydric, have phases that are not hydric depending on water table, flooding, and ponding characteristics.

This list of hydric soils was created by computer using criteria developed by the National Technical Committee for Hydric Soils. The criteria are selected soil properties that are documented in Soil Taxonomy (Soil Survey Staff, 1975, 1990, 1999) and Soil Interpretations Records (Soil Survey Staff, 1983).

This list will have a number of agricultural and nonagricultural applications. These include assistance in land-use planning, conservation planning, and assessment of potential wildlife habitat. A combination of the hydric soil, hydrophytic vegetation, and hydrology criteria defines wetlands as described in the 1987 Corps. Of Engineers Wetland Delineation Manual. Therefore, an area that meets the hydric soil criteria must also meet the hydrophytic vegetation and wetland hydrology criteria in order for it to be classified as a jurisdictional wetland.

Definition of Hydric Soil

A *hydric soil* is a soil that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part. The following criteria reflect those soils that are likely to meet this definition.

Criteria For Hydric Soils

- 1. All Histels except Folistels and Histosols except Folists, or
- 2. Soils in Aquic suborder, great groups, or subgroups, Albolls suborder, Pachic subgroups, or Cumulic subgroups that are:
 - a. Somewhat poorly drained with a water table equal to 0.0 foot (ft) from the surface during the growing season, or
 - b. poorly drained or very poorly drained and have either:
 - (1) water table equal to 0.0 ft. during the growing season if textures are coarse sand, sand, or fine sand in all layers within 20 inches (in), or for other soils
 - (2) water table at less than or equal to 0.5 ft from the surface during the growing season if permeability is equal or greater than 6.0 in/hour (h) in all layers within 20 in, or
 - (3) water table at less than or equal to 1.0 ft from the surface during the growing season if permeability is less than 6.0 in/h in any layer within 20 in, or
- 3. Soils that are frequently ponded for long duration or very long duration during the growing season, or
- 4. Soils that are frequently flooded for long duration or very long duration during the growing season.

List Of Hydric Soils

The State list includes at least one phase of the series that meets the hydric soil criteria.

The list does not include soils that are classified at categories higher than the series level in Soil Taxonomy (Soil Survey Staff 1975, 1990, 1999) nor does it include miscellaneous land types. The list is useful in identifying map units that may contain hydric soils. The state wide list was developed from "Hydric Soils of the United States."

The general list of Hydric Soils of Maine is computer generated from a national database that is periodically updated. The most current list is available from the State Conservationist, Natural Resources Conservation Service, 967 Illinois Avenue, Bangor, Maine 04401-2700.

NRCS has developed local lists of map units that contain hydric soils for each county in Maine. The local lists are available from the State Conservationist, NRCS, 967 Illinois Avenue, Bangor, Maine 04401-2700 or from your local Soil and Water Conservation Districts, and are the preferred lists for use in identifying hydric soils. The local lists are developed using the national list of hydric soils and the criteria for hydric soils.

Hydric Soil Indicators

The state list of hydric soils presents soil series that meet the hydric soil criteria. However, field identification of hydric soils is based on saturation, reduction, and development of soil morphological features that indicate anaerobic conditions in the upper part. A list of National Hydric Soil Indicators is being developed and tested by the Corps of Engineers, United States Fish and Wildlife Service, Natural Resources Conservation Service, and the Environmental Protection Agency. A separate regional list of indicators has been developed by federal, private and university soil scientists to identify hydric soils as they are defined in New England (see Field Indicators for Identifying Hydric Soils in New England, Version 3, 2004). The New England Interstate Water Pollution Control Commission (NEIWPCC) has adopted this regional list of indicators. It is possible that state regulatory agencies in New England may also adopt this list for administering their wetland protection programs. Soil scientists and others should be aware of the current technical indicators being used by state and federal agencies for hydric soil determinations and delineations in their respective region.

Literature Cited

Environmental Laboratory. 1987. *Corps of Engineers Wetland Delineation Manual, Technical Report Y-87-1,* US Army Engineer Waterways Experiment Station, Vicksburg, Miss.

Soil Conservation Service. 1994. *National Food Security Act Manual. Title 180.* USDA Soil Conservation Service, Washington, D.C.

Soil Survey Staff. 1999. *Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys.* USDA Natural Resources Conservation Service, Agric. Hdbk. 436, U.S. Government Printing Office, Washington, D.C. 869 pp.

Soil Survey Staff. 1994. *National Soil Survey Handbook.* USDA Soil Conservation Service, Washington, D.C.

New England Hydric Soils Technical Committee. 1998, 2nd ed., *Field Indicators for Identifying Hydric Soils in New England*, New England Interstate Water Pollution Control Commission. Wilmington, MA. P. 76.

APPENDIX 8

PRIME FARMLAND

PRIME FARMLAND SOILS

The U.S. Depar1ment of Agriculture (USDA) defines prime farmland as the best nationwide for producing food, feed, fiber, forage and oil seed crops. Criteria for prime farmland is tied directly to soil properties. Prime farmland can be in cultivation, forest, pasture or idle and it can be remote or inaccessible.

Specific criteria have been established by the USDA to determine which soils will be classified as prime farmland soils. These include:

- . Soil Temperature
- . Soil Moisture
- Rooting Depth
- . Soil pH
- . Flooding Frequency
- Soil Permeability
- . Stoniness
- . Erodibility and Slope

In general, prime farmlands have an adequate and dependable water supply from precipitation or irrigation, a favorable temperature and growing season, acceptable sodium and salt content and few or no rocks. They are permeable to water and air. Prime farmlands are not excessively eroded or saturated with water for long periods of time and either do not flood frequently during the growing season or are protected from flooding.

In the face of development pressure, accurate identification of prime farmlands is becoming more important at the local, state and federal level.

Local Importance

With the passage of Maine's Growth Management Law – "An Act to Promote Orderly Economic Growth and Natural Resource Conservation" – all municipalities are required to develop a growth management plan. One of the goals of these plans is to "safeguard agricultural and forest resources from development which threatens those resources." Identifying prime farmland soils is a key to meeting this objective.

State Importance

Agricultural land, especially the best and most productive, is a natural resource. The Department of Environmental Protection is charged with reviewing the wise use of Maine's natural resources.

Federal Importance

The "Farmland Protection Policy Act", passed in the early 1980's, also addresses this issue. The purpose of this act is to "minimize the extent to which Federal programs contribute to the unnecessary and irreversible conversion of farmland to nonagricultural uses, and to assure that Federal programs are administered in a manner compatible with State, unit of local government, and private programs and policies to protect farmland." As a result, any project that involves federal money or technical assistance, such as highways, wastewater treatment, plants, subsidized housing projects, even projects financed by the Farmers Home Administration, must be evaluated for their impact on farmland.

MAINE PRIME FARMLAND SOILS

3/2003

606AdA	AGAWAM FINE SANDY LOAM, 0 TO 2 PERCENT SLOPES
606AdB	AGAWAM FINE SANDY LOAM, 2 TO 8 PERCENT SLOPES
607AgA	ALLAGASH FINE SANDY LOAM, 0 TO 2 PERCENT SLOPES
614AgA	ALLAGASH FINE SANDY LOAM, 0 TO 2 PERCENT SLOPES
601AgA	ALLAGASH FINE SANDY LOAM, 0 TO 3 PERCENT SLOPES
610AgA	ALLAGASH FINE SANDY LOAM, 0 TO 3 PERCENT SLOPES
607AgB	ALLAGASH FINE SANDY LOAM, 2 TO 8 PERCENT SLOPES
614AgB	ALLAGASH FINE SANDY LOAM, 2 TO 8 PERCENT SLOPES
601AgB	ALLAGASH FINE SANDY LOAM, 3 TO 8 PERCENT SLOPES
610AgB	ALLAGASH FINE SANDY LOAM, 3 TO 8 PERCENT SLOPES
615AgB	ALLAGASH VERY FINE SANDY LOAM, 0 TO 8 PERCENT SLOPES
031AIB	ALLAGASH VERY FINE SANDY LOAM, 3 TO 8 PERCENT SLOPES
614BaA	BANGOR SILT LOAM, 0 TO 2 PERCENT SLOPES
614BaB	BANGOR SILT LOAM, 2 TO 8 PERCENT SLOPES
027Bab	BANGOR SILT LOAM, 3 TO 8 PERCENT SLOPES
602BaB	BANGOR SILT LOAM, 3 TO 8 PERCENT SLOPES
614BmB	BANGOR SILT LOAM, MODERATELY DEEP, 2 TO 8 PERCENT SLOPES
005BeB	BECKET FINE SANDY LOAM, 3 TO 8 PERCENT SLOPES
031BcB	BECKET FINE SANDY LOAM, 3 TO 8 PERCENT SLOPES
613BeB	BECKET FINE SANDY LOAM, 3 TO 8 PERCENT SLOPES
610BeB	BERKSHIRE FINE SANDY LOAM, 3 TO 8 PERCENT SLOPES
602BhB	BERKSHIRE LOAM, 0 TO 8 PERCENT SLOPES
607CgA	CARIBOU GRAVELLY LOAM, 0 TO 2 PERCENT SLOPES
608CgA	CARIBOU GRAVELLY LOAM, 0 TO 2 PERCENT SLOPES
607CgB	CARIBOU GRAVELLY LOAM, 2 TO 8 PERCENT SLOPES
608CgB	CARIBOU GRAVELLY LOAM, 2 TO 8 PERCENT SLOPES
606CfB	CHARLTON FINE SANDY LOAM, 0 TO 8 PERCENT SLOPES
610ChB	CHESUNCOOK SILT LOAM, 3 TO 8 PERCENT SLOPES

615CeB	CHESUNCOOK SILT LOAM, 3 TO 8 PERCENT SLOPES
617ChB	CHESUNCOOK SILT LOAM, 3 TO 8 PERCENT SLOPES
615DaB	DANFORTH CHANNERY SILT LOAM, 3 TO 8 PERCENT SLOPES
005DfB	DIXFIELD FINE SANDY LOAM, 3 TO 8 PERCENT SLOPES
610DfB	DIXFIELD FINE SANDY LOAM, 3 TO 8 PERCENT SLOPES
611DaB	DIXFIELD FINE SANDY LOAM, 3 TO 8 PERCENT SLOPES
613DfB	DIXFIELD FINE SANDY LOAM, 3 TO 8 PERCENT SLOPES
615DfB	DIXFIELD FINE SANDY LOAM, 3 TO 8 PERCENT SLOPES
611 DsB	DIXFIELD-COLONEL COMPLEX, 3 TO 8 PERCENT SLOPES
617DgB	DIXFIELD-COLONEL COMPLEX, 3 TO 8 PERCENT SLOPES
027EIB	ELDRIDGE FINE SANDY LOAM, 3 TO 8 PERCENT SLOPES
601EgB	ELDRIDGE FINE SANDY LOAM, 3 TO 8 PERCENT SLOPES
617EcB	ELLIOTTSVILLE-CHESUNCOOK COMPLEX, 3 TO 8 PERCENT SLOPES
610EtB	ELLIOTTSVILLE THORNDIKE COMPLEX, 3 TO 8 PERCENT SLOPES
005EmB	ELMWOOD FINE SANDY LOAM, 0 TO 8 PERCENT SLOPES
606EmB	ELMWOOD FINE SANDY LOAM, 2 TO 8 PERCENT SLOPES
610Fr	FRYEBURG SILT LOAM
615Fr	FRYEBURG SILT LOAM
613Fr	FRYEBURG VERY FINE SANDY LOAM
602Ha	HADLEY SILT LOAM
606Ha	HADLEY SILT LOAM
608Ha	HADLEY SILT LOAM
614Ha	HADLEY SILT LOAM
607HaA	HADLEY SILT LOAM, LEVEL
607HaB	HADLEY SILT LOAM, UNDULATING
615HoB	HOWLAND SILT LOAM, 3 TO 8 PERCENT SLOPES
608LnB	LINNEUS SILT LOAM, 0 TO 8 PERCENT SLOPES
027Le	LOVEWELL VERY FINE SANDY LOAM
601 Le	LOVEWELL VERY FINE SANDY LOAM
613Lo	LOVEWELL VERY FINE SANDY LOAM
610Lc	LOVEWELL-CORNISH COMPLEX, OCCASIONALLY FLOODED

MACHIAS FINE SANDY LOAM, 0 TO 8 PERCENT SLOPES 614MaB 607MaA MACHIAS GRAVELLY LOAM, 0 TO 2 PERCENT SLOPES 608MaA MACHIAS GRAVELLY LOAM, 0 TO 2 PERCENT SLOPES 607MaB MACHIAS GRAVELLY LOAM, 2 TO 8 PERCENT SLOPES MACHIAS GRAVELLY LOAM, 2 TO 8 PERCENT SLOPES 608MaB 031 MaB MADAWASKA FINE SANDY LOAM, 0 TO 8 PERCENT SLOPES 610MaB MADAWASKA FINE SANDY LOAM, 0 TO 8 PERCENT SLOPES 601 MaB MADAWASKA FINE SANDY LOAM, 3 TO 8 PERCENT SLOPES 610MDB MADAWASKA-ALLAGASH ASSOCIATION, GENTLY SLOPING 607MhB MAPLETON SHALY SILT LOAM, 0 TO 8 PERCENT SLOPES 608MhB MAPLETON SHALY SILT LOAM, 0 TO 8 PERCENT SLOPES MARLOW FINE SANDY LOAM, 3 TO 8 PERCENT SLOPES 005MaB 027MbB MARLOW FINE SANDY LOAM, 3 TO 8 PERCENT SLOPES 031 MrB MARLOW FINE SANDY LOAM, 3 TO 8 PERCENT SLOPES MARLOW FINE SANDY LOAM, 3 TO 8 PERCENT SLOPES 601 MrB MARLOW FINE SANDY LOAM, 3 TO 8 PERCENT SLOPES 610MeB 613MaB MARLOW FINE SANDY LOAM, 3 TO 8 PERCENT SLOPES 614MeA MELROSE FINE SANDY LOAM, 0 TO 2 PERCENT SLOPES 606MeB MELROSE FINE SANDY LOAM, 0 TO 8 PERCENT SLOPES MELROSE FINE SANDY LOAM, 2 TO 8 PERCENT SLOPES 614MeB 602MeB MELROSE FINE SANDY LOAM, 3 TO 8 PERCENT SLOPES 606MkB MERRIMAC FINE SANDY LOAM, 0 TO 8 PERCENT SLOPES 005MkB MERRIMAC FINE SANDY LOAM, 3 TO 8 PERCENT SLOPES 005MnB MONADNOCK FINE SANDY LOAM, 3 TO 8 PERCENT SLOPES MONADNOCK FINE SANDY LOAM, 3 TO 8 PERCENT SLOPES 613MnB NICHOLVILLE SILT LOAM, 0 TO 2 PERCENT SLOPES 607NcA NICHOLVILLE-CROGHAN COMPLEX, 0 TO 5 PERCENT SLOPES 617NGB NINIGRET FINE SANDY LOAM, 0 TO 8 PERCENT SLOPES 606NgB 0050n ONDAWA FINE SANDY LOAM 0310n ONDAWA FINE SANDY LOAM ONDAWA FINE SANDY LOAM 6060n

6140n	ONDAWA FINE SANDY LOAM
6130d	ONDAWA FINE SANDY LOAM, OCCASIONALLY FLOODED
005PbB	PAXTON FINE SANDY LOAM, 3 TO 8 PERCENT SLOPES
606PbB	PAXTON LOAM, 2 TO 8 PERCENT SLOPES
615PeB	PENQUIS PLAISTED COMPLEX, 3 TO 8 PERCENT SLOPES
615PhB	PENQUIS- THORNDIKE COMPLEX, 3 TO 8 PERCENT SLOPES
607PeA	PERHAM GRAVELLY SILT LOAM, 0 TO 2 PERCENT SLOPES
608PeA	PERHAM GRAVELLY SILT LOAM, 0 TO 2 PERCENT SLOPES
607PeB	PERHAM GRAVELLY SILT LOAM, 2 TO 8 PERCENT SLOPES
608PeB	PERHAM GRAVELLY SILT LOAM, 2 TO 8 PERCENT SLOPES
614PhB	PERHAM SILT LOAM, 0 TO 8 PERCENT SLOPES
005PkB	PERU FINE SANDY LOAM, 0 TO 8 PERCENT SLOPES
031 PeB	PERU FINE SANDY LOAM, 0 TO 8 PERCENT SLOPES
027BaB	PERU FINE SANDY LOAM, 3 TO 8 PERCENT SLOPES
601 PaB	PERU FINE SANDY LOAM, 3 TO 8 PERCENT SLOPES
607PgA	PLAISTED GRAVELLY LOAM, 0 TO 2 PERCENT SLOPES
608PgB	PLAISTED GRAVELLY LOAM, 0 TO 8 PERCENT SLOPES
607PgB	PLAISTED GRAVELLY LOAM, 2 TO 8 PERCENT SLOPES
614PgB	PLAISTED GRAVELLY LOAM, 2 TO 8 PERCENT SLOPES
602PgB	PLAISTED GRAVELLY LOAM, 3 TO 8 PERCENT SLOPES
615PtB	PLAISTED SILT LOAM, 3 TO 8 PERCENT SLOPES
005Py	PODUNK FINE SANDY LOAM
606Py	PODUNK FINE SANDY LOAM
614Py	PODUNK FINE SANDY LOAM
613Pt	PODUNK FINE SANDY LOAM, OCCASIONALLY FLOODED
607SaA	SALMON SILT LOAM, 0 TO 2 PERCENT SLOPES
031SkB	SKERRY FINE SANDY LOAM, 0 TO 8 PERCENT SLOPES
617SkB	SKERRY FINE SANDY LOAM, 3 TO 12 PERCENT SLOPES
005SkB	SKERRY FINE SANDY LOAM, 3 TO 8 PERCENT SLOPES
613SkB	SKERRY FINE SANDY LOAM, 3 TO 8 PERCENT SLOPES
614SeA	STETSON FINE SANDY LOAM, 0 TO 2 PERCENT SLOPES

602StB	STETSON FINE SANDY LOAM, 0 TO 8 PERCENT SLOPES
614SeB	STETSON FINE SANDY LOAM, 2 TO 8 PERCENT SLOPES
607SgA	STETSON GRAVELLY LOAM, 0 TO 2 PERCENT SLOPES
608SgA	STETSON GRAVELLY LOAM, 0 TO 2 PERCENT SLOPES
607SgB	STETSON GRAVELLY LOAM, 2 TO 8 PERCENT SLOPES
608SgB	STETSON GRAVELLY LOAM, 2 TO 8 PERCENT SLOPES
614SuB	SUFFIELD SILT LOAM, 2 TO 8 PERCENT SLOPES
614SvB	SUFFIELD VERY FINE SANDY LOAM, 2 TO 8 PERCENT SLOPES
606SxB	SUTTON LOAM, 0 TO 8 PERCENT SLOPES
005TyB	TUNBRIDGE-LYMAN COMPLEX, 3 TO 8 PERCENT SLOPES
027TrB	TUNBRIDGE-LYMAN COMPLEX, 3 TO 8 PERCENT SLOPES
610TuB	TUNBRIDGE-LYMAN COMPLEX, 3 TO 8 PERCENT SLOPES
611TuB	TUNBRIDGE-LYMAN COMPLEX, 3 TO 8 PERCENT SLOPES
613TyB	TUNBRIDGE-LYMAN COMPLEX, 3 TO 8 PERCENT SLOPES
617TuB	TUNBRIDGE-LYMAN COMPLEX, 3 TO 8 PERCENT SLOPES
601TrB	TUNBRIDGE-LYMAN FINE SANDY LOAMS, 3 TO 8 PERCENT SLOPES
606Wn	WINOOSKI SILT LOAM
607Wn	WINOOSKI SILT LOAM
608Wn	WINOOSKI SILT LOAM
614Wn	WINOOSKI SILT LOAM
005WrB	WOODBRIDGE FINE SANDY LOAM, 0 TO 8 PERCENT SLOPES
606WrB	WOODBRIDGE LOAM, 0 TO 8 PERCENT SLOPES

APPENDIX 9

SOIL SERIES OF MAINE CLASSIFICATIONS

SOIL SERIES USED IN MAINE & THEIR CLASSIFICATION ACCORDING TO THE <u>KEYS TO SOIL TAXONOMY</u>, <u>EIGHTH EDITION 1999</u>

(1/2004 SUBJECT TO CHANGE)

SERIES		ST C	LASSIFICATION (SUBJECT TO CHANGE)
ABRAM		ΜE	LOAMY, ISOTIC, FRIGID LITHIC HAPLORTHODS
ADAMS		ПҮ	SANDY, ISOTIC, FRIGID TYPIC HAPLORTHODS
ALLAGASH		MΕ	COARSE-LOAMY OUER SANDY OR SANDY-SKELETAL, ISOTIC,
			FRIGID TYPIC HAPLORTHODS
ATHERTON		ПҮ	FINE-LOAMY, MIXED, ACTIVE, NONACID, MESIC AERIC
			ENDORQUEPTS
AU GRES	mi	SANDY,	, MIXED, FRIGID TYPIC ENDOAQUODS
AURELIE		ME	FINE-LOAMY, MIXED, ACTIVE, NONACID, FRIGID,
			SHALLOW AERIC EPIAQUEPTS
BANGOR	ME	COARS	E-LOAMY, ISOTIC, FRIGID TYPIC HAPLORTHODS
BECKET		ПН	COARSE-LOAMY, ISOTIC, FRIGID OXY AQUIC HAPLORTHODS
BEMIS		MΕ	COARSE-LOAMY, MIXED, ACTIVE, ACID, SHALLOW AERIC
			CRYAQUEPTS
BENSON	UT	LOAMY	Y-SKELETAL, MIXED, ACTIVE, MESIC LITHIC
			EUTRUDEPTS
BERKSHIRE		MA	COARSE-LOAMY, ISOTIC, FRIGID TYPIC HAPLORTHODS
BIDDEFORD		ME	FINE, ILLITIC, NONACID, FRIGID HISTIC HUMAQUEPTS
BOOTHBAY		ME	FINE-SILTY, MIXED, SUPERACTIVE, FRIGID AQUIC DYSTRIC
			EUTRUDEPTS
BRAYTON		MΕ	COARSE-LOAMY, MIXED, ACTIVE, NONACID, FRIGID AERIC
			EPIAQUEPTS
BUCKSPORT		MΕ	EUIC, FRIGID TYPIC HAPLOSAPRISTS
BURNHAM		MΕ	COARSE-LOAMY, MIXED, SUPERACTIVE, NONACID, FRIGID,
			SHALLOW HISTIC HUMAQUEPTS
BUXTON	ME	FINE, I	LLITIC, FRIGID AQUIC DYSTRIC EUTRUDEPTS

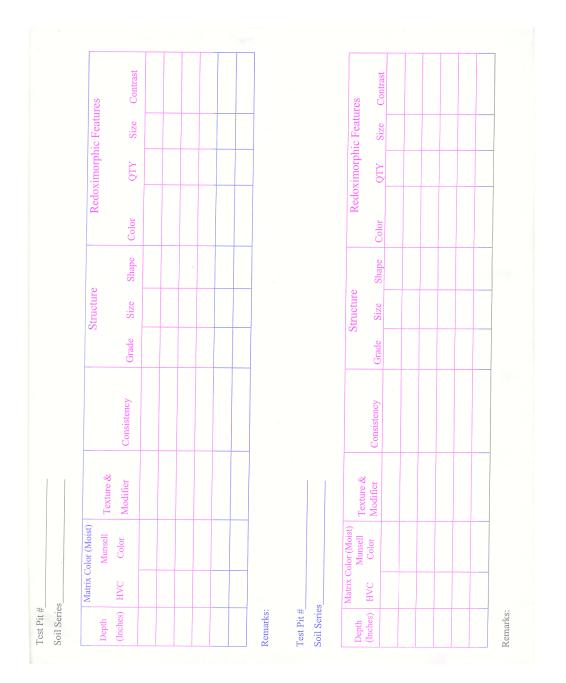
CANAAN	ПН	Inam	Y-SKELETAL, MIXED, FRIGID LITHIC HAPLORTHODS
CARIBOU		те	FINE-LOAMY, ISOTIC, FRIGID TYPIC HAPLORTHODS
CHARLES		ME	COARSE-SILTY, MIXED, SUPERACTIVE, NONACID, FRIGID
			AERIC FLUUAQUENTS
CHESUNCOOK		ME	COARSE-LOAMY, ISOTIC, FRIGID AQUIC HAPLORTHODS
CHOCORUA		ПН	SANDY OR SANDY-SKELETAL, MIXED, DYSIC, FRIGID TERRIC
			HAPLOHEMISTS
COLONEL		ШE	COARSE-LOAMY, ISOTIC, FRIGID, SHALLOW AQUIC
			HAPLORTHODS
COLTON	NY	SANDY	Y-SKELETAL, ISOTIC, FRIGID TYPIC HAPLORTHODS
CONANT	ШE	FINE-	LOAMY, ISOTIC, FRIGID AQUIC HAPLORTHODS
CORNISH		ME	COARSE-SILTY, MIXED, SUPERACTIVE, FRIGID FLUV
			AQUENTIC DYSTRUDEPTS
CROGHAN		NY	SANDY, ISOTIC, FRIGID AQUIC HAPLORTHODS
DANFORTH		ME	LOAMY-SKELETAL, ISOTIC, FRIGID TYPIC HAPLORTHODS
DIXFIELD		ME	COARSE-LOAMY, ISOTIC, FRIGID AQUIC HAPLORTHODS
DIXMONT		ME	COARSE-LOAMY, ISOTIC, FRIGID AQUIC HAPLORTHODS
DUANE		ПҮ	SANDY-SKELETAL, MIXED, FRIGID, ORTSTEIN TYPIC
			HAPLORTHODS
DUXBURY		UT	SANDY, ISOTIC, FRIGID TYPIC HAPLORTHODS
EASTON	ME	FINE-	LOAMY, MIXED, SUPERACTIVE, NONACID, FRIGID AERIC
			ENDORQUEPTS
ELDRIDGE		UT	SANDY OVER LOAMY, MIXED, ACTIVE, NONACID, MESIC
			AQUIC UDORTHENTS
ELLIOTTSVILL		ME	COARSE-LOAMY, ISOTIC, FRIGID TYPIC HAPLORTHODS
ELMWOOD		ME	COARSE-LOAMY OVER CLAYEY, MIXED OVER ILLITIC,
			SUPERACTIVE, FRIGID AQUIC DYSTRIC EUTRUDEPTS
ENCHANTED		ME	LOAMY-SKELETAL, ISOTIC TYPIC HUMICRYODS
FINCH		mi	SANDY, MIXED, FRIGID, ORTSTEIN, SHALLOW TYPIC
			DURAQUODS
FREDON	NJ	COARS	SE-LOAMY OUER SANDY OR SANDY-SKELETAL, MIXED,

		ACTIVE, NONACID, MESIC AERIC ENDORQUEPTS
FRYEBURG	ME	COARSE-SILTY, MIXED, SUPERACTIVE, FRIGID FLUVETIC
		DYSTRUDEPTS
GOULDSBORO	ME	FINE-SILTY, MIXED, SUPERACTIVE, NONACID, FRIGID TYPIC
		SULFAQUENTS
HALSEY	nj	COARSE-LOAMY OUER SANDY OR SANDY-SKELETAL, MIXED,
		ACTIVE, NONACID, MESIC TYPIC HUMAQUEPTS
HERMON	ME	SANDY-SKELETAL, ISOTIC, FRIGID TYPIC HAPLORTHODS
HOGBACK	UT	LOAMY, ISOTIC, FRIGID LITHIC HAPLOHUMODS
HOWLAND	ME	COARSE-LOAMY, ISOTIC, FRIGID AQUIC HAPLORTHODS
KINSMAN	NH	SANDY, ISOTIC, FRIGID TYPIC ENDOAQUODS
LAMOINE	ME	FINE, ILLITIC, NONACID, FRIGID AERIC EPIAQUEPTS
T-LILLE	ME	COARSE-SILTY, MIXED, SUPERACTIVE, ACID, FRIGID TYPIC
		UDIFLUVENTS
LINNEUS	ME	COARSE-LOAMY, ISOTIC, FRIGID DYSTRIC EUTRUDEPTS
LOVEWELL	ME	COARSE-SILTY, MIXED, SUPERACTIVE, FRIGID FLUU
		AQUENTIC DYSTRUDEPTS
Lyman	MA	LOAMY, ISOTIC, FRIGID LITHIC HAPLORTHODS
LYME	NH	COARSE-LOAMY, MIXED, ACTIVE, ACID, FRIGID AERIC
		ENDORQUEPTS
MACHIAS	ME	COARSE-LOAMY OUER SANDY OR SANDY-SKELETAL, MIXED,
		FRIGID AQUIC HAPLORTHODS
MADAWASKA	ME	COARSE-LOAMY OUER SANDY OR SANDY-SKELETAL, ISOTIC,
		FRIGID AQUIC HAPLORTHODS
MAHOOSUC	ME	DYSIC TYPICCRYOFOLISTS
MAPLETON	ME	FINE-LOAMY, MIXED, SUPERACTIVE, FRIGID DYSTRIC
		EUTRUDEPTS
MARKEY	mi	SANDY OR SANDY-SKELETAL, MIXED, EUIC, FRIGID TERRIC
		HAPLOSAPRISTS
MARLOW	ПН	COARSE-LOAMY, ISOTIC, FRIGID OXY AQUIC HAPLORTHODS
MASARDIS	ME	SANDY-SKELETAL, ISOTIC, FRIGID TYPIC HAPLORTHODS

	TIVE, NONACID, FRIGID
FLUU AQUENTIC HUMAQUEPTS	
MELROSE ME COARSE-LOAMY OVER CLAYEY, MI	IXED OUER ILLITIC,
SUPERACTIVE, FRIGID OXY AQUIC I	DYSTRUDEPTS
MONADNOCK NH COARSE-LOAMY OUER SANDY OR S	SANDY-SKELETAL, ISOTIC,
FRIGID TYPIC HAPLORTHODS .	
MONARDA ME COARSE-LOAMY, MIXED, ACTIVE, A	ACID, FRIGID, SHALLOW
AERIC EPIAQUEPTS	
MONSON ME LOAMY, ISOTIC, FRIGID LITHIC HAP	PLORTHODS
MOOSILAUKE NH SANDY, MIXED, FRIGID AERIC ENDO	OAQUEPTS
NASKEAG ME SANDY, ISOTIC, FRIGID TYPIC ENDO	OAQUODS
NAUMBURG NY SANDY, ISOTIC, FRIGID TYPIC ENDO	OAQUODS
NICHOLUILLE NY COARSE-SILTY, ISOTIC, FRIGID AQ	UIC HAPLOR THODS
ONDAWA ME COARSE-LOAMY, MIXED, ACTIVE, A	FRIGID FLUVENTIC
DYSTRUDEPTS	
PEACHAM UT COARSE-LOAMY, MIXED, ACTIVE, A	nonacid, frigid,
SHALLOW HISTIC HUMAQUEPTS	
PENQUIS ME COARSE-LOAMY, ISOTIC, FRIGID T	YPIC HAPLORTHODS
PERHAM ME FINE-LOAMY, ISOTIC, FRIGID AQUI	IC HAPLORTHODS
PERU NH COARSE-LOAMY, ISOTIC, FRIGID A	IQUIC HAPLORTHODS
PILLSBURY NH COARSE-LOAMY, MIXED, ACTIVE, A	ACID, FRIGID
AERICEPIAQUEPTS	
PLAISTED ME COARSE-LOAMY, ISOTIC, FRIGID O	NXY AQUIC HAPLORTHODS
PODUNK ME COARSE-LOAMY, MIXED, ACTIVE, A	FRIGID FLUV AQUENTIC
DYSTRUDEPTS	
PONDICHERRY NH SANDY OR SANDY-SKELETAL, MIX	KED, EUIC, FRIGID TERRIC
HAPLOSAPRISTS	
RAWSONVILLE UT COARSE-LOAMY, ISOTIC, FRIGID T	YPIC HAPLOHUMODS
RED HOOK <i>NY COARSE-LOAMY, MIXED, SUPERA</i>	CTIVE, NONACID, MESIC
AERIC ENDORQUEPTS	
RICKER UT DYSIC LITHIC CRYOFOLISTS	

RIFLE		mi	EUIC, FRIGID TYPIC HAPLOHEMISTS
ROUNDABOUT	ME	COARSE	-SILTY, MIXED, ACTIVE, NONACID, FRIGID AERIC
			EPIAQUEPTS
RUMNEY		ШE	COARSE-LOAMY, MIXED, ACTIVE, NONACID, FRIGID FLUU
			AQUENTIC ENDOAQUEPTS
SADDLEBACK		ШE	LOAMY, ISOTIC LITHIC HUMICRYODS
SALMON		ПҮ	COARSE-SILTY, ISOTIC, FRIGID TYPIC HAPLOR THODS
SCANTIC	ME	FINE, IL	LITIC, NONACID, FRIGID TYPIC EPIAQUEPTS
SCHOODIC		ME	LOAMY-SKELETAL, MIXED, ACTIVE, ACID, FRIGID LITHIC
			UDORTHENTS
SEARSPORT		ME	SANDY, MIXED, FRIGID HISTIC HUMAQUEPTS
SEBAGO	ME	DYSIC, I	FRIGID FIBRIC HAPLOHEMISTS
SHEEPSCOT		ME	SANDY-SKELETAL, ISOTIC, FRIGID AQUIC HAPLORTHODS
T-SHIRLEY		ШE	LOAMY-SKELETAL, ISOTIC, FRIGID TYPIC ENDOAQUODS
SISK		ШE	COARSE-LOAMY, ISOTIC OXY AQUIC HUMICRYODS
SKERRY		ПН	COARSE-LOAMY, ISOTIC, FRIGID AQUIC HAPLORTHODS
SKOWHEGAN		ШE	SANDY, ISOTIC, FRIGID AQUIC HAPLORTHODS
STETSON		ШE	SANDY-SKELETAL, ISOTIC, FRIGID TYPIC HAPLORTHODS
SUFFIELD		ma	COARSE-SILTY OVER CLAYEY, MIXED, ACTIVE, MESIC
			DYSTRIC EUTRUDEPTS
SUNAPEE		ПН	COARSE-LOAMY, ISOTIC, FRIGID AQUIC HAPLORTHODS
SUNDAY	ME	MIXED,	FRIGID TYPIC UDIPSAMMENTS
SURPLUS		ШE	COARSE-LOAMY, ISOTIC AQUIC HAPLOCRYODS
SWANTON		ME	COARSE-LOAMY OUER CLAYEY, MIXED OUER ILLITIC,
			SUPERACTIVE, NONACID, FRIGID AERIC EPIAQUEPTS
SW ANVILLE		ME	FINE-SILTY, MIXED, ACTIVE, NONACID, FRIGID AERIC
			EPIAQUEPTS
TELOS		ME	COARSE-LOAMY, ISOTIC, FRIGID, SHALLOW AQUIC
			HAPLORTHODS
THORNDIKE		ME	LOAMY-SKELETAL, ISOTIC, FRIGID LITHIC HAPLORTHODS
TOGUS		MΕ	SANDY OR SANDY-SKELETAL, MIXED, EUIC, FRIGID TERRIC

		HAPLOFIBRISTS
TUNBRIDGE	UT	COARSE-LOAMY, ISOTIC, FRIGID TYPIC HAPLORTHODS
UASSALBORO	ME	DYSIC, FRIGID TYPIC HAPLOFIBRISTS
WASKISH	mn	DYSIC, FRIGID TYPIC SPHAGNOFIBRISTS
WAUMBEK	NH	SANDY-SKELETAL, ISOTIC, FRIGID AQUIC HAPLORTHODS
WESTBURY	ПҮ	COARSE-LOAMY, ISOTIC, FRIGID TYPIC FRAGIAQUODS
WHATELY	ME	COARSE-LOAMY OVER CLAYEY, MIXED OVER ILLITIC,
		SUPERACTIVE, NONACID, FRIGID MOLLIC EPIAQUEPTS
WHITMAN	MA	COARSE-LOAMY, MIXED, ACTIVE, NONACID, MESIC TYPIC
		HUMAQUEPTS
WINNECOOK	ME	LOAMY-SKELETAL, ISOTIC, FRIGID TYPIC HAPLORTHODS
WON SQUEAK	ME	LOAMY, MIXED, EUIC, FRIGID TERRIC HAPLOSAPRISTS


ITALICS = Series with a mesic temperature regime, no longer used in Maine.

<u>UNDERLINED SERIES</u> = Series from outside MLRA Region R - these series may have different soil properties from what was described when these soils were first identified in Maine.

T – represents a Tentative Series that has not been Established as yet.

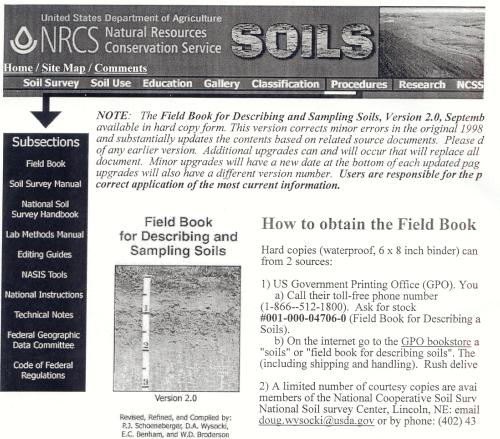
APPENDIX 10

SOIL PROFILE TEST PIT DESCRIPTION FORM

Revised 3/2009

Series or Component Name: Map Unit Symbol: Photo #: $Caveat Emptor 127 Describer(s): Date: CaC 127 Describer(s): mN: Dotaci: mN: Soit: Discriber(s): mN: Topo Quad:Emerala, NE Site states UTM: Zone: mN: Topo Quad:Emerala, NE Site states UTM: Zone: mN: Topo Quad:Emerala, NE Site states UPland Landform: Microfeature: Antho: Reval Upland Iow hill Topo Quad:Emerala, NE Site states Reval Upland Iow hill Topo Quad:Emerala, NE Site states Reval Upland Iow hill Topo Quad:Emerala, NE Site states Reval Upland Iow hill Microfeature: Antho: Reval Under none e slope micro-low micro-low moisture Uters none e slope micro-low moisture Rid Drainage: WO none e slope micro-low moisture Method is the indext is the indextis Moisture Mic$				
Date: Date: Date: Weather: SZ DAW 10/12/2000 Sunny Zone: mE: mN: Topo 0uad:Emerald, Zone: ME Topo 0uad:Emerald, Addition: Landform: Microfeature: Addition: Microfeature: Anthro: Flooding: Microfeature: Microfeature: Material: Ioose slope Ponding: In Consection: Flooding: None Material: Ioose slope None Incolding: None None Material: Ioose slope None Material: Ioose slope None Incolding: Ave. Rock Frag %: Ange: SO - BO cm S7% Are. Cabyean stubble 1% Incolding: S% Incolding: S%		fine, smectitic, mesic, Typic Argiudoll	Argiudoll	Soil Moist. Regime (Tax.): Udic (≈ 27" annual)
Zone : mE: mN: Topo Quad:Emerald, 7.5 topo 1978 cape: Landform: Microfeature: Anthro: nd low hill — furrow pe Profile Position: Geom. Component: Microfeature: Anthro: ulder nose slope Pronding: Microfeature: Anthro: is: WD Flooding: Pronding: Incroledware is: WD Poore slope Ponding: Incroledware material: loess, over Bedrock: Kind: Fract: IDrained) 1 (Very High) Kind: Sandstone nit, R Material: loess, over Bedrock: Kind: Sandstone if: Ase. Clay %: Ase. Rook Frag %: <1%	Temp.: Air: 78 ° F Soil: Depth:	Latitude: 40 ° 49 ' 10.0 " N Datum: Longitude: 96 ° 46 ' 06.1 " W NAD '83		Location: NE 1/4, SW 1/4 Sec. 20 T. 10N R. 6E
andform: Microfeature: Anthro: low hill furrow low hill furrow ion: Geom. Component: Microrellet: F nose slope micro-low none slope micro-low none till Sandstone (in. Degree: Runoff: VH S 1 (Very High) K Ave. Clay %: Ave. Rock Frag %: K Ave. Clay %: Ave. Rock Frag %: K Degrees Sunoff: (in. bgrass SGD COVER SGD COVERSGD COVERSGD COVERSGD COVERSGD COVER	Site ID: Yr: State: 5 2002 NE -	County: Pedon #: Soil Su 109 - 006 Lanca		Transect: ID: 2 Stop #: 6 Interval: 10m
ion: Geom. Component: Microrelief: Indero-low Microrolow Microrolow Sa, over Hooding: Ponding: Ponding: NONE Sandstone (in. Degree: Runoff: VH Si (in. Degree: Runoff: VH S) Ave. Clay %: Ave. Rock Frag %: Ave. Clay %: Ave. Rock Frag %: Common name % GD com 37% < 1% Corrent % GD com 37% < 1% Si (in. Sandstone (in. Corrent % Corrent % GD com 37% Si (in. Sandstone (in. Corrent % Corrent % GD com 37% Si (in. Sandstone (in. Corrent % Corr	Elevation: Aspect: 1240° $34^{\circ}E$	Slope (%): Slope Complexity:	Slope Shape: (Up & Dh / Across) V V (CONVEX, CONVE	(x
Flooding: Ponding: nOne none ss, over Bedrock: begree: Runoff: Aue. Clay %: Aue. Rook Frag %: Aue. Clay %: Aue. Rook Frag %: Aue. Clay %: Aue. Rook Frag %: D crm 37% < 1%	Physic. Division: Physic. Province: Interior Plains Central Lowland	ince: Physio. Section: -owland Dissected Till Plain	State Physio. Area:	Local Physio. Area: Middle Creek Basin
ss, over till Sandstone Kind: Frad: over till Sandstone (in. Degree: Runoff: VH (Very High) k A.e. Clay %: Ave. Rook Frag %: Ave. Clay %: Ave. Rook Frag %: 20 cm 37% < 1% vFGETATION : vbean stubple 13% vbean stubple 5%	Soil Moisture Status: moist	Permeability: $slow (est.)$ $low (ave. = 0.011 cm/hr;low (ave. = 0.011 cm/hr;K_{sat}:n=3; depth; 35-50 cm)$	La	Land Cover / Use: Soybeans (CRC)
Degree: Runott: VH S 1 (Very High) k Ave. Clay %: Ave. Hock Frag %: A BO cm 37% < 1%	act.: Hard.: Depth: (in adiacent aully) > 15 m	Lithostrat. Units: Peoria Loess Gillmar	Group: Formation: Gillman Canvon unnamed	
Ave. Clay %: Ave. Flock Frag %: BO cm 37% < 1% VEGETATION : <1% Common NAME % GD COVER Ibgrass 5% bgrass 5%		ST: BD: CN: FL:	Diagnostic Horz. / Prop.:	
VEGETATION : VEGETATION : connon name % cb cover Connon name % cb cover 2 Soybean stubble 1% 2 Crabgrass 5% 1 5% 5%		-		
I Soybean stubble 1% 2 Crabgrass 5% 6%	MI	MISCELLANEOUS FIELD NOTES	NOTES / SKETCH	H:
2 Crabgrass 1% 5% 5%	deep polygonal joints in till:	ill:	 80 810	· · · · · · · · · · · · · · · · · · ·
Crabgrass	≈ 30° angle, 10 - 20 cm diam		9	
Feedback Feedback Feedback Feedback Feedback Feedback Feedback Feedback Feedback Feedback	1-20, white, cacoz			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ ail
Feedback Feedback Feedback Feedback Feedback Feedback Feedback Feedback Feedback Feedback Feedback Feedback	1 ADI Ined seams	LOESS	- Dt 1	
The second sec	100 in center		Agr.	0 0 0 <i>brown</i>
Provinced Fe / Mn Z Fe / Mn Z Pounded Pounded Pounded Fe (goet halo at	have dad her haven I black	Gillman Canvon Continuial lossa	1 24 2	0 0 0
Pounded Yellow / E Fe (goet)		Ļ		: 1
Fe (goet) Fe (goet)			38 145	0000 00 0000 0000 0000 0121vele
Fe (goet) halo at	yellow / br.	weathered	4Bt1	
halo at	Fe (goethite)	oxidized	ed 4Bt 2 160	Min 11 11 prom
	halo at	Pre-Illinoian till { mottled, u	mottled, unoxidized, A BC 210:	11 11 11 11 arayis
250 cm	250 cm	leacher	hed 230.	<u> 11 11 110 </u>
depth.	depth.	mottled, u unleached	noxidized, 4C	10/10/
	0000		-	

Revised 3/2009


	S	Component Nam	ame:				M	Map Unit Symbol:	ymbol:					Date:
Ō	Obser. Depth	Horizon	Bnd	Matr	Matrix Color	Texture	Rock Frags	S	Structure	0	Consistence	nce		Mottles
M	ethod (in) (cm)			Dry	Moist		Knd % Rnd	Sz Grade	Sz Type	Dry	Mst	Stk	Pls	% Sz Cn Col Mst Sp Loc
	LP 0-20	AP	Abrupt Smooth	10YR 4/2	10YR 3/1	silt loam (sil)	-0-	comr	common, fine & 5 med. granular	Slightly Hard	Friable	non- sticky p	non- plastic	None
	LP 20-30	A	CW	10YR 4/2	10YR 3/1	sil	-0-	3 f,n		HM	FI	50	DO	
	LP 30-60	Bt1	GW	2.5 Y 6/2	10YR 5/3	sicl	-0-	2 m,	2 m,c sbk	I	VFI	55	MP	
-	LP 60-90	2Bt2	GW	10YR 6/3	70% 10YR 4/3 30% 10YR 5/3	sicl	2% scattered f,m rounded gr.	2 m 2 m	2 m pr ⇒ 2 m sbk	H	VFI	55	MP	
1	LP 90-130	2Bt3	AW	10YR 4/4	40% 7.5YR 4/3 60% 7.5YR 3/3	Sil	2% scattered f,m rounded gr	1	Î	HM	FI	55	SP	
-	LP 130-145	3B	AW	7.5YR 5/4	7.5YR 4/6	xgrscl	85% f, m, co. rounded gravels mixed litholoav		0 sg	L	T	50	50	
1	LP 145-160	4Bt1	GW	7.5YR 5/6	7.5YR 4/6	cl	10% f, rounded gr., mixed lithology		2 m sbk ⇒ 3 vf.f sbk	HN	EF	MS	MP	-
	LP 160-210	4BT2	DW	7.5YR 4/4	7.5YR 4/4	cl	1% f,m rounded gr., mixed lithclogy		3 co., vco pr ⇒ 3 f, m sbk	EH	SR	MS	MP	15% coarse, faint, 10 YR 4/3 mottles, M, irregular, on ped faces
L	LP 210-230	4BC	ID	2.5YR 7/2 2.5YR 5/2	2.5YR 5/2	v	1% f,m rounded gr., mixed lithology		3 co, vco pr ⇒ 2 m sbk	EH	R	VS	dN	None
~ /	SP 230-260+	4C	-	2.5YR 7/2	2.5YR 5/2	U	1% f,m rounded gr., mixed lithology	3	co, vco pr ⇒ 3 f.m abk	R	R	VS	dN	None
	Redoximorphic Features	(0)	Col	Concentrations		Ped / V. Surface Features	ce Features	Roots	Pores	Hq	Effer	Clay	CCE	Notes
0	% Sz Cn Hd Sp Kd Loc Bd Col	%	Sz Cn F	Cn Hd Sp Kd Loc	Bd Col	% Dst Cont K	Cont Kd Loc Col Q	Oty Sz Loc	Oty Sz Shp	(meth)	(meth) (agent)	%		
	None			None		None		1 m T 2 vf. f T	few, very fine, dendr. tubular	5.0	* NE,	HZ		(* pH by pocket pH meter, 1:1 soil to water)
0								1 m T 2 vf.f T	2 of TE	6.0	NE,	HZ		
								2 vf T 1 f T	2 vf.f TE	6.7	NE,	HZ		
4								1 vf T 1 f T	2 vf,f TE	6.9	NE,	HZ		
10						+	fe	few, very fine, between peds	2 vf TE	7.2	NE,	HZ		
9					20	20%, prominent, discontinuous clay films on rock fragments	discontinuous sk fragments	None	3 vf.f IR	7.1	NE,	HZ		gravel pavement with scattered, small gully fills
~	*					85%, P, cont. (C), clay films (CLF) on all ped faces (PF)	P, cont. (C), clay films on all ped faces (PF)		2 vf.f TE	7.1	NE,	HZ		till joint ghosts remain; truncated paleosol; strong argillans & pedo. structure
00	common, med., distinct 10 YR 6/3 iron depletions in matrix	10 YR atrix				40%, D, discont. (D), CLF on PF	t. (D), CLF		2 vf TE 1 f TE	7.6	NE,	HZ		till joints ghost and fade upwards to top at 45°; clay & Fe/Mn coated prisms
9 f	f, 3, P, 10 YR 2/1, MNF, APE	111		-		27%, D, patchy (P), CLF on ped and void faces (PVF)	r (P), CLF on aces (PVF)		2 of TE	7.7	SL, H	HZ		polygonal till joints ghost & tip 30° to North (downslope)
10	c, 4, P, 2.5 / N, MNF, on prism faces (APF)	c, vco, along joi	so. P. wh joints	c, vco, P, white, I, CaCO ₃ nodules along joints (CRK) & in matrix (MAT)		7%, P, discont., pressure faces (PRF) on pf throughout	ressure faces throughout	-	1 vf.f 10	8.2	SL, H2 (nodules VE)	H2 ss VE)		till joints tip 30° to North (down slope)

Appendix 11

Descriptions for Standard Landforms and Miscellaneous Surface Features

APPENDIX 12

Order Form - Field Book for Describing and Sampling Soils

National Soil Survey Center Natural Resources Conservation Service

U.S. Department of Agriculture Lincoln, Nebraska Foreword

Acknowledgments

The Present Science and Art of Soil Descripti

This information comes from the Field Book for Describing and Sampling Soils by Wysocki, Benham, and Broderson, 2002. The printed Field Book is published on 4" paper in a six-ring, loose-leaf binder similar to those used for Color Books. The maj address Site Description, Soil Profile Description, and Geomorphology, with additio information in sections on Geology, Soil Taxonomy, Locations, Field Sampling, an Miscellaneous topics such as conversion of units. The Field Book is also tabbed for reference.

Questions concerning the Field Book may be directed to:

Standard Procedures | Field Book

http://soils.usda.gov/procedures/field_bk/m

Douglas A. Wysocki National Soil Survey Center MS 34 100 Centennial Mall North Lincoln, NE 68508-3866 (402) 437-4155

Appendix 13

Commonly Asked Questions About Soil Surveys

COMMONLY ASKED QUESTIONS ABOUT SOIL SURVEYS

WHAT IS A SOIL SURVEY?:

A soil survey is an inventory of the soil resources of an area based on a field investigation. Using the results of the field investigation, a soil map is prepared as well as a written report, called a narrative that describes and classifies the soils and interprets their suitability and limitations for various uses.

HOW IS A SOIL SURVEY MADE?:

A soil survey is similar to a forest inventory except that most of the resource being mapped is not visible above ground. Soil scientists use base maps such as aerial photographs and topographic maps when making a soil map because they can see land forms as well as other features which help define the extent of a particular soil type. They then make numerous soil observations within the various landforms to collect soil data. Finally, they use descriptions and analyses of the soils observed for comparison to established soil series to determine specific soil types present in the soil survey area. Some of the characteristics used to differentiate soil series include: the various combinations of sand, silt, clay and rock fragments which make up the soil (texture); depth to water table; depth to bedrock; the presence or absence of dense layers (hardpan) and the acidity level of the soil. Once a soil map is made, the soil scientist prepares an I accompanying report to describe and classify the soils and interpret them for various uses.

ARE ALL SOIL SURVEYS THE SAME?:

While the same standards are generally used in making all soil surveys in Maine, the end product can vary widely. One of the reasons for this variability is the level of detail desired for the survey. A soil survey of the United States would not be able to show the level of detail that a soil map of a state or county would or one prepared for an individual landowner. Large scale soil surveys of a state or county can only show broad soil categories and are useful for general planning purposes. For instance, the soil surveys prepared by NRCS (formerly SCS) which are available at County Soil and Water Conservation Districts, are useful to towns when deciding where growth should be encouraged. They are not however, useful for locating small areas of wetland on a property or where to site a septic system. For that kind of information a High Intensity Soil Survey would be needed which can separate soils down to areas as small as ½ acre. In comparison, an NRCS soil map typically will only differentiate soils down to about 4 acres in size for fields and may only differentiate down to 15 acres or more in size for wooded areas. This often is larger than an entire property and is certainly larger than most building lots which means that the property or lot may be an "Inclusion". An inclusion is an area of soil which differs, sometimes significantly, from the soil for which the map unit is named but is too small to show as a separate map unit (smaller than the minimum map unit size). The minimum size of allowable, significantly different, inclusions should be determined by the purpose of the soil survey.

Another reason for the variation in soil surveys is the purpose for the soil survey. There are many different kinds of soil in Maine with over 100 established soil series. It would be nearly impossible to make a soil map which separates soils on the basis of every difference, no matter how small or important. Therefore, soils are often grouped together into what are called "soil map units" if the differences in properties are not significant and do not affect the intended use. For example, if a soil survey was being done to determine the potential for spreading septage on a property, where bedrock is only a concern if it occurs at a depth of less than 30 inches, the soil scientist may choose not to investigate whether or not bedrock is present at a greater depth in all soil pits because of cost, difficulty (if machinery is not available to excavate soil pits) and the fact that it doesn't affect use and management of the site for the purpose of the survey. If, however, the survey was for a subdivision where septic systems were to be installed and buildings with basement were to be constructed, it would be important to know if bedrock was present to a greater depth. On the other hand, a survey for a subdivision may not differentiate soils on the basis of how much topsoil was present over sandy soils which is quite important if a site is to be used for septage spreading. It is therefore, quite important to know the level of detail and purpose of the soil survey in order to determine whether or not it may be appropriate for a specific use.

WHAT IS THE ADVANTAGE OF HAVING A SOIL SURVEY MADE (IS IT WORTH THE COST)?:

Answer - Generally speaking, the cost of a high intensity soil survey can be recouped many times over through cost savings realized by having detailed knowledge of the soil resources of a property and using that information to plan an intended use accordingly.

Land Owner Perspective - Land owners can gather much useful information from having a soil survey made of their property if they have a specific use in mind. Some regulated uses such as septage spreading require a soil survey but others just make good sense. If a land owner is planning on subdividing a property, the division of the land should be based upon soil types. Otherwise, one or more lots may not have suitable soils for septic systems which means unbuildable lots or the expense of having a new property survey and design plans. A property may also contain wetlands that prevent development or require expensive permits to cross but could be avoided if their presence and extent were known. Knowing the soil types in advance can help with the planning so that building sites and access can be achieved in the most cost effective manner. If the landowner intends to build interior roads, knowing the soil types will help in choosing the best location. For land owners wishing to build a home on a property, a soil survey can indicate where the best location is for constructing a basement that will not be wet or for building a road that will not sink into a wetland or be subject to flooding. The relative cost for development can be obtained on the basis of soil survey data by referring to the document Soil Potential Ratings for Low Density Development available at your county Soil and Water Conservation District Office. Soil surveys can also be helpful for other uses such as for forestry or agriculture. That is because some soil types are more productive than others for growing certain tree species or crops. It would also help to know here to spend management dollars for the best return.

Town Perspective - For a town, soil survey data can be invaluable information on which to base a permitting decision. It enables the town officials to determine if a property is suitable for an intended use and whether the proposal works with the strengths of the property or against them. Issues such as wetland impacts can be determined on the presence or absence of wetland (hydric) soils, a necessary component of all wetlands. Groundwater and surface water threats can also be assessed on the basis of soil survey information. Even the potential value of a property can be determined by knowing its potential for certain uses (useful to tax assessors). Without soil survey information, a town may permit the use of a property for an incompatible use. On the other hand, the town may deny the use of a property for which it is well suited. A good decision is a well informed decision.

IS THERE A DIFFERENCE BETWEEN A LICENSED SITE EVALUATOR AND A CERTIFIED SOIL SCIENTIST?:

Yes, there is a difference between a Licensed Site Evaluator and a Certified Soil Scientist. A Site Evaluator is only licensed to evaluate soil properties for the purposes of siting a septic system and must report their findings in terms specified by the Maine State Plumbing Code. They can also design a septic system on the basis of that soil evaluation. Site Evaluators can not however, evaluate soil properties for any other purpose and can not prepare a soil map or soil survey. To make hydric soil determinations, to make a soil map or soil survey, or to determine suitability of soils on a property for anything other than septic systems, you must be a Maine Certified Soil Scientist or an NRCS Soil Scientist. Most Maine Certified Soil Scientists are also Licensed Site Evaluators but most Licensed Site Evaluators are not also Maine Certified Soil Scientists.

WHAT DO THE SYMBOLS ON A SOIL MAP MEAN AND HOW DO I TRANSLATE THEM INTO INFORMATION USEFUL TO ME?:

The three letter symbols on soil maps, surrounded by solid lines that represent their boundaries, are called "map units". Typically, map units are named for the type of soil that makes up the majority of the soil in the map unit. There are however inclusions of

similar and dissimilar soils in most map units that the user should know about. This information can be found in the soil narrative, which is a written report about the soil survey. The symbols are abbreviation for one or more of the over 100 soil series established in Maine and for the slope of the land. Established means that the soil has been officially recognized as having a unique set of properties and it commonly occurs in Maine. The properties of all established soil series have been studied, use and management for a number of purposes can be predicted and published information is available to the public about them. The first two letters of the symbol represent the abbreviation for the soil name and the third letter represents the symbol for slope.

To find out what the symbols mean for a particular soil map, look for the legend on the soil map, which defines them. Each soil map legend should be reviewed because there are no standard symbols for each soil type and therefore the symbols can have different meanings on different maps. You should also read the soil narrative which, is a written report that accompanies each soil survey. This report is another source of information about the soil map units and also mentions what differences the soils on the project site may have from established soil series (if any). Soil scientists typically name a soil map unit after a soil series that has soil properties most closely representative of what they have actually found. Sometimes there are significant differences. It is therefore important to read the narrative and determine if and how the soils are different from an established soil series. The narrative should also explain how those differences affect use and management of the soils for the intended use, as compared to the established soil series for which it is named. You can also contact the soil scientist whose name is on the maps and report for that information.

Once you know the soil series name, there are a couple of sources you can go to for information on their use and management for a number of uses. One is the NRCS website; me.nrcs.usda.gov. Find the Electronic Field Office Technical Guide and go to Section 2. Here you will find what is called "Interpretation Records". These have been developed by NRCS for a number of uses of each soil series including forestry, wildlife, crops and a whole host of urban uses such as housing, roads, gravel sources, ponds etc. This same information can be obtained at your local Soil and Water Conservation District Office (there are 16 located throughout the state). The SWCD's also have copies of a document called "Soil Potential Ratings for Low Density Development" which rates each soil in the county on its potential for; buildings with basements, roads and septic systems. A separate Soil Potential Ratings document was developed for each county. This document will give information on whether or not a particular soil can be used for each of the three categories and if there are any limitations. If there are limitations, they will be listed and also what cost can be expected in order to overcome the limitation(s). Please note, these documents have been developed to replace the outdated Soil Suitability Guide, which is no longer appropriate for use. PLEASE DISCARD ANY COPIES YOU MAY HAVE OF THE SOIL SUITABILITY GUIDE AND, IF IT IS

REFERENCED IN A TOWN ORDINANCE, MAKE AN EFFORT TO HAVE THE ORDINANCE CHANGED TO DELETE THIS OUTDATED REFERENCE AND REPLACE IT WITH A REFERENCE TO SOIL POTENTIAL RATINGS. Should

you have any questions about this recommendation, contact the Maine State Soil Scientist at 287-2666 or your local Soil and Water Conservation District Office (which is also the local NRCS Field Office).

WHO DO I CONTACT TO GET A SOIL SURVEY MADE OF MY PROPERTY?:

Other than soil surveys made by the Natural Resources Conservation Service for public purposes, all soil surveys made in the state must be made by a Maine Certified Professional Soil Scientist. To obtain the names of certified soil scientists in the state, you can contact the clerk for the Board of Certification at 624-8627 (there is a modest fee for a printout of the list of licensees for the entire state), the Maine State Soil Scientist's Office at 287-2666, your town Code Enforcement Office or visit the Maine Association of Professional Soil Scientists Web Site at WWW.MAPSS.ORG. You can also contact the Maine State Soil Scientist for questions regarding soil surveys.